

# Limited detailed site investigation, Lot 3 DP1118635, 41 King Street, Tarago, NSW



#### Report written by:

Dr J.F. Jasonsmith, PhD, CPSS, CEnvP Murrang Earth Sciences Pty Ltd

Report to be reviewed by: Dr. Chris Gunton, PhD, CEnvP SC Lanterra Consulting Pty Ltd

#### 21 July 2023

02 6161 1762

contact@murrang.com.au

www.murrang.com.au ABN 96 162 928 958

#### Report written for:

GroupOne Unit 5 45 – 51 Grimwade St Mitchell ACT 2911

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page i



## Document details

#### **Report title**

Limited detailed site investigation, Lot 3 DP1118635, 41 King Street, Tarago, NSW

|             | Version    | Review<br>number | Author       | Reviewer                | Date<br>submitted |
|-------------|------------|------------------|--------------|-------------------------|-------------------|
| MES2167-R02 | Draft SAQP | 0                | JJS<br>(MES) | C. Gunton<br>(Lanterra) | 9 June 2023       |
| MES2167-R02 | Draft DSI  | 1                | JJS<br>(MES) | C. Gunton<br>(Lanterra) | 10 July 2023      |
| MES2167-R02 | Final DSI  | 2                | JJS<br>(MES) | GroupOne                | 21 July 2023      |

| Receiver Delegate |               | Format |  |
|-------------------|---------------|--------|--|
| GroupOne          | Yaaman Majeed | Email  |  |

02 6161 1762

contact@murrang.com.au

WWW.MUTTANg.com.au ABN 96 162 928 958



### Executive summary

The property at 41 King Street (Lot 3 DP1118635), Tarago (the Site) is owned by Terry Geoghegan and Susan Buckley. These owners have received correspondence from Goulburn Mulwaree Regional Council soliciting their interest in rezoning the Site for further residential development (S. Buckley, pers. com., 18 May 2023). GroupOne was engaged to oversee the rezoning of this land, with Murrang Earth Sciences engaged to undertake a preliminary site investigation of the Site. The preliminary site investigation of the Site delivered by Murrang Earth Sciences found two potential contamination sources. These were dust, cut, fill from railway ballast or nearby mine(s); and pesticide use as a result of agricultural activities. A limited detailed site investigation was recommended by Murrang Earth Sciences to provide the necessary data to confirm whether these potential sources of contamination do occur.

The limited detailed site investigation recommended by Murrang Earth Sciences is presented herein and was undertaken in two parts. The first part involved planning field work. Part two of was commenced upon Murrang Earth Sciences' receipt of Chris Gunton's review of part one and involved sample collection and analysis.

Two sources of contamination were considered to occur at the Site, including pesticides; and mine tailings, slag, and/or dust. Based on these sources, lead, arsenic, DDT+DDE+DDD, aldrin and dieldrin, chlordane, endosulfan, endrin, heptachlor, hexachlorobenzene, methoxychlor, mirex, toxaphene, 2,4,5 T, 2,4 D, MCPA, MCPB, mecoprop, picloram, atrazine, chlorpyrifos, and bifenthrin were considered contaminants of concern. Ten locations were sampled at the Site. Samples were collected from the A horizon (i.e., a depth of approximately 0.1 to 0.1 m below ground surface) and from the top of the B horizon (i.e., a depth of approximately 0.1 below ground surface and below) at each location, due to the sources of contamination at the site being from the ground surface.

Chemicals of concern at the Site were below the adopted assessment criteria in all cases. No indications of contamination occurred at the Site. Based on this, chemicals of concern are considered to not present an unacceptable risk to human health and environmental receptors at the Site. The site is suitable for its proposed residential and environmental use, with no remediation necessary at the Site to make it suitable for these uses.

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page iii

02 6161 1762



## Disclaimer

This report has been prepared for use by GroupOne. It has been prepared for the purposes outlined in Section 1 of this report. The report must not be relied upon, copied, or duplicated by any other party without written agreement from Murrang Earth Sciences and Murrang Earth Sciences accepts no duty of care to any third party in any way whatsoever. Due care was exercised in the preparation of this report in accordance with standard industry practice. No warranty, express or implied is made in relation to the contents of this report. Murrang Earth Sciences assumes no liability for any loss resulting from errors, omissions, or misrepresentations made by others.

### Acknowledgement of country

Murrang is the Wiradjuri word for mud. Murrang Earth Sciences is grateful to the Wiradjuri people for their language. Our offices are proudly in Canberra on Ngunnawal and Ngambri Country. We acknowledge the Traditional Owners of the land on which we work, and their knowledge, culture, and spiritual connection to Country.

02 6161 1762

contact@murrang.com.au

Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023

Reference: MES2167-R02:2

Page iv

www.murrang.com.au ABN 96 162 928 958



# Table of contents

| 1.    | Introduction                                         | 1    |
|-------|------------------------------------------------------|------|
| 2.    | Site identification                                  |      |
| 3.    | Site history, condition, and surrounding environment |      |
| 3.1   | Preliminary conceptual site model                    | 4    |
| 4.    | Guidelines and regulations                           | 6    |
| 5.    | Sampling and analysis quality plan                   | 9    |
| 6.    | Results and discussion                               | . 10 |
| 6.1   | Quality assurance and quality control                | . 10 |
| 6.1.1 | Field quality assurance and quality control          | . 11 |
| 6.1.2 | Laboratory quality assurance and quality control     | . 15 |
| 6.2   | Final conceptual site model                          | . 16 |
| 6.3   | Risk assessment and site suitability                 | . 16 |
| 7.    | Compliance                                           | 17   |
| 8.    | Information gaps and limitations                     | . 18 |
| 9.    | Conclusions and recommendations                      |      |
| 10.   | References                                           | . 19 |

02 6161 1762

contact@murrang.com.au

www.murrang.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page v



# Figures, tables, and appendices

| Figure 1. Site location                                                   | 2  |
|---------------------------------------------------------------------------|----|
| Figure 2. Location of samples to be collected from the Site               | 10 |
| Table 1. Geographical details relevant to the Site                        | 5  |
| Table 2. Health investigation level criteria adopted for the Site         | 8  |
| Table 3. Ecological investigation level criteria adopted for the Site     | 9  |
| Appendix A. Data quality objectives and data quality indicators           | A1 |
| Appendix B. Sample receipt notifications and chain-of-custody information | B1 |
| Appendix C. Sample analytical results                                     | C1 |
| Appendix D. Field core logs                                               | D1 |
| Appendix E. Laboratory quality assurance and quality control reports      | E1 |
| Appendix F. Laboratory reports                                            | F1 |
| Appendix G. External review                                               | G1 |

02 6161 1762

contact@murrang.com.au

www.murrang.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page vi



# Limited detailed site investigation, Lot 3 DP1118635, 41 King Street, Tarago, NSW

#### 1. Introduction

The property at 41 King Street (Lot 3 DP1118635), Tarago, New South Wales (NSW) is owned by Terry Geoghegan and Susan Buckley (the Site, Figure 1). These owners have received correspondence from Goulburn Mulwaree Regional Council soliciting their interest in rezoning the Site for further residential development (S. Buckley, pers. Com., 18 May 2023). GroupOne was engaged to oversee the rezoning of this land, with Murrang Earth Sciences engaged by GroupOne to undertake the preliminary site investigation necessary to inform land rezoning.

The preliminary site investigation of the Site delivered by Murrang Earth Sciences found that two potential contamination sources. These were dust, cut, fill from railway ballast or nearby mine(s); and pesticide use as a result of agricultural activities. A limited detailed site investigation was recommended to provide the necessary data to confirm whether these potential sources of contamination do occur<sup>1</sup>. The limited detailed site investigation recommended by Murrang Earth Sciences is presented herein and was undertaken in two parts. The first part involved planning field work, with these plans first reviewed by external reviewer Dr Chris Gunton, a Certified Environmental Practitioner General (1044) and Site Contamination Specialist (SC41045) within the Site Contamination Practitioners Australia Scheme, to ensure appropriate planning for the field work component of the detailed site investigation had taken place. Part two of this detailed site investigation assessment was commenced upon Murrang Earth Sciences' receipt of Chris' review and is also presented herein.

The aim of the limited detailed site investigation of 41 King Street, Tarago was to assess the contamination status of the Site by meeting the following objectives:

- 1) determine concentrations of lead, arsenic, herbicides, and pesticides that are considered potential contaminants of concern in soils at the Site to a sufficient degree that a risk assessment may be undertaken;
- 2) evaluate concentrations of contaminants of concern in soil samples for risk of harm to human health and the environment;
- 3) assess the suitability of the Site for its proposed development in relation to risk of harm to human health and the environment from contaminants of concern; and
- 4) make recommendations regarding any further assessment or remediation of the Site.

02 6161 1762

contact@murrang.com.au

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 1 of 19





(a)



(b)

Figure 1. Location of the Site relative to (a) other localities in southern NSW and the Australian Capital Territory (ACT); and (b) Tarago. Boundaries are indicative only and figures not accurately drawn to scale

02 6161 1762

contact@murrang.com.au

WWW.MUTTANg.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 2 of 19



This limited detailed site investigation report is framed in accordance with the National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM) 1999<sup>2</sup> (amended 2013) and the New South Wales Environment Protection Authority's (NSW EPA's) 2020 "Consultants reporting on contaminated sites" guidelines<sup>3</sup>. Under Schedule B1 (and others) of the ASC NEPM, potential risks associated with site contamination are constrained based on whether there are sources of contamination, receptors of this contamination, and if exposure and/or transport pathways between these sources and receptors are present or could be present. Areas within which potential sources of contamination occur are called areas of environmental concern (AECs), with contamination sources being either environmental or human. Environmental contamination sources refer to contaminants of concern that occur within a site due to natural processes, while human contamination sources are those that arise due to some form of current or previous human intervention. Whether contamination sources are natural or otherwise, contamination presents a chemical hazard-that is contamination has the potential to cause harm to human health and the environment, with the probability of a hazard causing harm termed the risk of harm in this context.

Details pertaining to aspects of the Site's geography relevant to contamination are presented first in this report, within Section 2. A summary of the Site's history, condition, surrounding environment, and how contamination was assumed to manifest at the Site (i.e., the preliminary conceptual site model) is presented in Section 3, with detailed information on these subjects presented in Murrang Earth Sciences preliminary site investigation of the Site<sup>1</sup>. The criteria and guidelines with which the risk to human health and the environment were evaluated at the Site, along with the regulatory framework enabling these guidelines, are presented in Section 4. The plan created to guide the collection and analysis of samples from the Site is then presented in Section 5.

Section 6 details the results of this limited detailed site investigation, including works undertaken to assess and ensure quality control; constrain how contamination manifests at the Site; risks to human health and the environment; and the Site's suitability for its proposed use. An assessment of how this detailed site investigation has complied with New South Wales regulatory requirements relating to contaminated site assessment is made in Section 7. Information gaps and limitations are presented in Section 8. Conclusions on the level of risk contamination presents to human health and the environment at the Site and its suitability for its proposed use are made in Section 9, with the references referred to in this report's text presented in Section 10.

The scope of works undertaken to deliver this detailed site investigation included:

- Development of a sampling, analysis, and quality Assessment of laboratory analysis results against plan
- Collection of samples from the Site
- Laboratory analysis of chemical concentrations in External peer review samples collected from the Site
- adopted guidelines
- Development and delivery of this reports

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 3 of 19

02 6161 1762



#### 2. Site identification

The following information has been drawn from Murrang Earth Sciences preliminary investigation of the Site<sup>1</sup>. The Site is located in a temperate climate zone, with a mean annual rainfall of 400 to 600 mm and mean annual evaporation of 1600 to 1800 mm<sup>4</sup>. Evaporation therefore exceeds precipitation for much of the year, however, thunderstorms are expected to see surface water infiltrate soils below the depth of evaporation influence even during the hot, dry summer months. This means that under the right conditions, contaminants at the soil surface can be mobilised into deeper soil layers at the Site.

All areas except the western-most portion of the Site have an easterly aspect and slope towards Tarago, located approximately 20 m below the Site's 725 m AHD elevation. Run-off and erosion, or contamination impacted groundwater, if it were present within the vadose zone, is therefore considered likely to flow towards Tarago from the Site. Contaminants that occurred at or west of the Site residence were considered instead to have the propensity to flow west into an unnamed watercourse the rises immediately west of the Site's boundary.

A planning certificate for the Site (Section 10.7 (2) Planning Certificate under the Environmental Planning and Assessment Act 1979) was presented in Murrang Earth Sciences' preliminary site investigation<sup>1</sup>. Planning advice is outside Murrang Earth Sciences expertise. A statement with regards to the suitability of the Site for redevelopment is therefore outside the scope of works for this investigation, however, Murrang Earth Sciences understands that Planned Pty Ltd have been engaged to provide planning advice with regards to the Site's proposed rezoning works. Further details in relation to the Site are presented in Table 1.

### 3. Site history, condition, and surrounding environment

Contamination sources at the Site can be classified as environmental contamination sources and human contamination sources. Potential contamination sources at the Site were established in Murrang Earth Sciences' preliminary site investigation<sup>1</sup>, with receptors of this contamination, and exposure/transport pathways between these sources and receptors at the Site established within a preliminary conceptual site model. A summary of this conceptual site model is presented in Section 3.1 below, and in full within Murrang Earth Sciences preliminary site investigation for the Site<sup>1</sup>.

#### 3.1 Preliminary conceptual site model

A conceptual site model is a description of how suspected or actual contamination at a Site is understood to cause harm to human health and/or the environment. The NSW EPA "Consultants reporting on contaminated

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635,

> Tarago, NSW 21 July 2023

Page 4 of 19



Description Item Site name or description N/A Street address (street number & name, suburb), 41 King Street, Tarago, 2580 NSW town/city Property description (e.g. Section, hundred, plan, Lot 3, DP1118635, Tarago parcel) Current certificates of title (identifying portion or full Murrang Earth Sciences' preliminary site title) investigation<sup>1</sup> -35.075625326, 149.637615159 Latitude, longitude (centre of site) Geographic coordinates using GDA94 / MGA 55 H 740691.56 m E, 6115403.14 m S Elevation 725 m AHD Terry Geoghegan and Susan Buckle Current owner(s) Terry Geoghegan and Susan Buckle Current occupier(s) Site area and dimensions 100393 m<sup>2</sup> (100 ha) Local government authority Goulburn Mulwaree Regional Council Current zoning (planning) **RU2** Rural Landscape Figure 1 Locality map Trigger for assessment (e.g. Change in land use) Proposed rezoning from RU2 to RU5 State or local government statutory controls assigned SEPPs; Goulburn Multiple Mulwaree Local to the site Environmental Plan 2009<sup>1</sup> Legal permission to access site required/obtained N/A Permission via Client (GroupOne) Consent of adjoining land owners and/or occupiers to N/A access land (if required)

Table 1. Geographical details relevant to the Site and specified in the ASC NEPM

land" guidelines (2020)<sup>2</sup> describe the requirements of a conceptual site model as follows:

The essential elements of a conceptual site model are:

- b) known and potential sources of contamination and contaminants of concern including the mechanism(s) of contamination
- c) list of potentially affected media including biota if applicable
- d) list of human and ecological receptors (both on- and off-site)
- e) potential and complete exposure pathways (both on- and off-site, including preferential pathways which are of particular relevance to the assessment of vapour).

This section outlines the preliminary conceptual model developed for the Site within Murrang Earth Sciences preliminary site investigation and that identified the means by which further investigations of contamination at the Site should occur.

Surface soils were the key receptor of contamination at the Site, where deposition, placement, or transport of mining- or railway ballast-associated metals onto surface site soils was considered to have potentially occurred as a result of historical mining and railway operations in the area surrounding the Site; and pesticides may have been sprayed onto plants or applied to animals as part of the Site's agricultural land use and had the potential

02 6161 1762



to be affecting soils from the surface down. The highest concentration of potential contaminants of concern was expected to be close or at the soil surface, based on this information. Decreasing impact was expected to occur with increasing soil depth in the event such contamination occurred. Impacted surface soils also presented the most likely contaminant exposure pathway to receptors, where dermal contact; consumption of soils by children; dust inhalation; and consumption of impacted fruit, vegetables, and eggs by humans and other fauna considered to be the main exposure pathways. Natural occurrences of metals at the Site were considered to be unlikely, based on the site geology outlined in Murrang Earth Sciences preliminary site investigation, whereby metals' deposits are located a number of kilometres from the Site and the rock types at the Site location are not conducive to mineral deposits.

No groundwater bores were present on Site, with rainwater tanks currently acting as the water supply to the Site's residence. The potential for an exposure pathway to exist between groundwater beneath the Site and Tarago residents was considered, in the event that soils were identified as a receptor that then acted as a source of contamination to groundwater during the detailed site investigation. This was due to groundwater being used as a source of drinking water by Tarago residents<sup>6</sup>.

A range of activities that potentially contaminate the Tarago aquifer occur in the areas surrounding the Site. These are considered in the "Draft Tarago Village Strategy: Goulburn Mulwaree Regional Council – October 2021"<sup>6</sup>, and were therefore considered outside the scope of works of this report.

None of the transport and exposure pathways presented within the preliminary site investigation were confirmed to occur, with no data collected during the preliminary site investigation's scope of works<sup>1</sup>. While there was expected to be some variability in the different components of the conceptual site model (i.e., differences in the concentrations of chemicals in soils; differences in the connectivity between soils and groundwater), such variability was considered to be due to differences in soil characteristics, where two soil types are known to occur across the Site, and whether fill or herbicide use has occurred in discrete areas<sup>1</sup>. The sampling regime used to close the information gap presented by the lack of data needed to account for this variability in site characteristics.

#### 4. Guidelines and regulations

In the case of contamination assessments, guidelines are developed by regulators to maximise the adherence of those working on contaminated sites with legislative frameworks. Three guidelines were utilised for the purposes of this detailed site investigation. The New South Wales Environment Protection Authority (NSW EPA) *"Guidelines for consultants reporting on contaminated land: Contaminated lands guidelines*<sup>3</sup>"</sup> (The consultants reporting on contaminated land: NSW made under the Contaminated Land



Management Act 1997 (CLM Act), with contaminated land regulated under the CLM Act. The consultants reporting on contam. land guidelines should thus be used and referred to in assessments of contaminated lands in NSW. The consultants reporting on contam. lands guidelines require contaminated site assessments refer to Schedules A and B of the National environment protection (assessment of site contamination) measure (1999)— that is the ASC NEPM<sup>2</sup>. As such, the ASC NEPM is also referred to in this document. Finally, the NSW EPA *"Sampling design guidelines part 1 – application"* guidelines (the sampling design guidelines), although made under the CLM Act, are complementary rather than statutory guidelines<sup>5</sup>. The sampling design guidelines were used to establish an appropriate sample regime for the Site.

Schedule A of the ASC NEPM presents the general process for the assessment of site contamination<sup>2</sup>. In this process a preliminary site investigation is first undertaken, followed by a detailed site investigation, with these two stages considered part of a Tier 1 risk assessment. Tier 2 and 3 risk assessments are to be undertaken in the event that the guidelines adopted from Schedule B of the ASC NEPM are exceeded and there is insufficient evidence with which to derive risk-based remediation strategies. The preliminary site investigation undertaken previously at the Site and the detailed site investigation presented herein are considered Tier 1 risk assessments under the ASC NEPM framework.

The potential for contaminants of concern to act as hazards to human health is evaluated in NSW and indeed all of Australia using human health criteria adopted from Schedule B of the ASC NEPM. The human health investigation level (HIL) criteria were developed using four different conceptual models—that is scenarios—of contaminant exposure, with these models differing in relation to sensitive populations, intensity, frequency, and means of exposure to soil contaminants<sup>2</sup>. The HIL A criteria, for example, were developed for scenarios where children are the most sensitive receptors likely to occur at a site and where children are frequently exposed to soils via gardens or through recreation. This scenario is used to model the risks of contamination within pre-schools. The HIL A scenario is considered most appropriate at the Site, as future residential development has the potential to allow for children to access soils via gardens and/or recreation. The HIL A criteria selected for the pesticides and toxic metals to be assessed at the Site are presented in Table 2.

Ecological investigation levels (EILs) for aged contaminants in urban residential soils adopted from the ASC NEPM were used to assess the potential hazard contaminants of concern identified in the soil present to the environment. Criteria for aged contaminants in the soil were used due to the potential for contaminants at the Site to have been present for more than 20 years, and aged criteria relating to contaminants present for at least two years. The EIL criteria available and selected for the pesticide and metal contaminants of potential concern are presented in Table 3.

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 7 of 19

#### 02 6161 1762



Table 2. Health investigation level (HIL) criteria adopted from the National Environment Protection Measures<br/>(Assessment of Site Contamination) 1999 guidelines (ASC NEPM). The laboratory practical quantitation<br/>limits (PQLs), which are the lowest concentration the laboratory can analyse for accurately, are also<br/>presented for all contaminants of concern, with these provided by SGS Environmental as the selected<br/>laboratory

| Chemical group            | Analyte             | HIL A<br>(mg/kg) | Laboratory PQL<br>(mg/kg) |
|---------------------------|---------------------|------------------|---------------------------|
| Toxic metals              | Lead                | 300              | 1.0                       |
| -                         | Cadmium             | 20               | 0.3                       |
| -                         | Chromium            | 100              | 0.5                       |
| -                         | Copper              | 6000             | 0.5                       |
|                           | Nickel              | 400              | 0.5                       |
| -                         | Zinc                | 7500             | 2.0                       |
| Arsenical pesticides      | Arsenic             | 100              | 1.0                       |
| Organochlorine pesticide  | DDT+DDE+DDD         | 240              | 0.1                       |
| -                         | Aldrin and dieldrin | 6                | 0.1 and 0.2               |
| -                         | Chlordane           | 50               | 0.1                       |
| -                         | Endosulfan          | 270              | 0.2                       |
| -                         | Endrin              | 10               | 0.2                       |
| -                         | Heptachlor          | 6                | 0.1                       |
| -                         | Hexachlorobenzene   | 10               | 0.1                       |
| -                         | Methoxychlor        | 300              | 0.1                       |
| -                         | Mirex               | 10               | 0.1                       |
| -                         | Toxaphene           | 20               | 0.1                       |
| Phenoxy acid herbicide    | 2,4,5 T             | 600              | 0.01                      |
| -                         | 2,4 D               | 900              | 0.01                      |
| -                         | MCPA                | 600              | 0.01                      |
| -                         | МСРВ                | 600              | 0.01                      |
| -                         | Mecoprop            | 600              | 0.01                      |
| Pyridine                  | Picloram*           | 4500             | 0.01                      |
| Triazine herbicide        | Atrazine            | 320              | 0.5                       |
| Organophosphate pesticide | Chlorpyrifos        | 160              | 0.2                       |
| Pyrethroid pesticide      | Bifenthrin          | 600              | 0.5                       |

02 6161 1762



| Analyte | EIL<br>(mg/kg) |
|---------|----------------|
| Arsenic | 50             |
| Lead    | 270            |
| DDT     | 180            |

 Table 3. Ecological investigation levels for aged contaminants in urban soils calculated using the National

 Environment Protection Measures (Assessment of Site Contamination) 1999 (ASC NEPM) toolbox

Both the EIL and HIL A guidelines selected for the purposes of this limited detailed site investigation were above the selected laboratory's (i.e., SGS Environmental's) practical quantitation limits (PQL) for the contaminants of concern.

#### 5. Sampling and analysis quality plan

The collection and chemical analyses of samples from the Site by the selected laboratory was undertaken in accordance with data quality objectives (DQOs), and in a way that ensured all data quality indicators (DQIs) were met. Data quality objectives (DQOs) are statements that define the purpose of contamination assessments to be undertaken, and the type, quantity, and quality of data needed to ensure robust gathering of evidence for risk-based decision making. Both field and laboratory work conducted in relation to chemicals of concern were assessed against DQOs, with the DQOs outlined in NSW EPA's *"Consultants reporting on contaminated land"*<sup>3</sup> adopted for these purposes in this report. The ASC NEPM is referred to in the NSW EPA's *"Consultants reporting on contaminated land"*<sup>3</sup> guidelines, with the ASC NEPM drawn upon where relevant. Data quality indicators (DQIs) are measures of the degree of acceptability or usability of sampling data for the detailed site investigation undertaken. Data quality objectives for this investigation, as well as the data quality indicators used to assess whether data quality objectives are met are detailed in Appendix A. A summary of Appendix A is presented in this section.

The works presented in Appendix A indicated ten locations needed to be sampled at the Site as part of this limited detailed site investigation. Samples were to be collected from the A horizon (i.e., a depth of approximately 0.1 to 0.1 m below ground surface) and from the top of the B horizon (i.e., a depth of approximately 0.1 below ground surface and below) at each location, due to the sources of contamination at the site being from the ground surface. Samples were to be collected using a hand auger by Julia Jasonsmith, with one sample to be collected in triplicate (i.e., three replicates were to be collected). A rinsate blank was also to be collected from the auger used to collect samples. Samples were to be collected from random locations established using a grid and as outlined in Appendix A. Sampling locations were also presented in Figure 2 below, for ease of use.

02 6161 1762

contact@murrang.com.au

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 9 of 19





Figure 2. Location of samples to be collected from the Site on a systematic basis, whereby a random number generator within Microsoft Excel was used to generate sample locations within this grid. The background to the image presents the two soil types, Morass (eastern two-thirds of the Site) and Slight Hill (western third of the Site, known to occur at the Site and from which a proportionate number of samples must be collected. Further details are presented in Appendix A

#### 6. Results and discussion

Quality control and quality assurance procedures were performed for both sample collection and laboratory analyses to ensure the accuracy and precision of sample results. In this section, the results and implications of the quality assurance/quality control procedures are outlined first for field work and then for laboratory analyses. An assessment of linkages between contamination sources, receptors, and the transport and exposure pathways between these two factors is described in Section 6.2, before an assessment of risks to human health and the environment and the Site's suitability is made in Section 6.3.

#### 6.1 Quality assurance and quality control

Appendix A details the data quality objectives to be met for the purposes of this limited detailed site investigation. This section summarises the data quality measures actually undertaken, with those measures undertaken in the field first presented in Section 6.1.1, and those by the laboratory in Section 6.1.2.

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635,

> Tarago, NSW 21 July 2023

Page 10 of 19

02 6161 1762



#### 6.1.1 Field quality assurance and quality control

Samples were collected from the Site on 27 June 2023 by Julia Jasonsmith, a consultant suitably qualified for contaminated site investigation, using a hand auger to excavate soils and a tape measure to assess sampling depth. Soils were placed directly onto grasses for assessment and logging. The samples placed on the grass were then separated into laboratory supplied jars with no preservative. Clean and new nitrile gloves were used to collect each sample. Jars were sealed and placed into an ice box with ice and chain-of-custody documentation for transport to the primary laboratory, SGS Australia, by courier. A secondary laboratory was not used for the purposes of this investigation. Excess excavated soils were placed back into excavations using a hand trowel.

Samples were received in appropriate condition by SGS (Appendix B). The sampling rate at which samples were collected from the Site was in accordance with Section B.1.5.1 in Appendix A of this report as follows.

Samples were collected from 10 locations across the whole of the Site, termed Area of Environmental Concern 1 (AEC 1). Two samples were collected from each location, with one sample collected from just below the soil surface, generally from a depth of 0.1 to 0.2 m below ground surface (m bgs), and a second sample from the top of the B horizon, at depths of up to 0.4 m bgs. Samples were collected using a hand auger, with soil adhered to the auger surface brushed off between sample locations using a brush brought to the Site for this purpose. Collection of a rinsate blank was required as part of this site investigation, to assess the potential for cross-contamination between samples caused by material being carried between sites on the hand auger used to excavate for samples. The rinsate blank was collected using rinsate water provided by SGS. Rinsate water was collected off the blade of the hand auger used to collect samples. Rinsate water destined for metals analysis was filtered in the field using 0.45  $\mu$ m nylon filters. Analysis of this rinsate water showed no detection of analytes in any instances (Appendix C, Table C1). No indications of cross-contamination caused by the transferral of chemicals between samples from the hand auger is considered to have occurred.

At least two soil types were identified during field sampling based on field observations. In the western side of the Site, at the top of the slope, represented by Samples 5, 8, and 9, soils were either well-graded, fine, sands or sandy clays. In the east of the Site and mid-slope area, represented by all other samples collected for the purposes of this report, soil profiles consisted of red and brown clays (Figure 3). Samples were collected from across the Site as specified in Appendix A and are therefore considered representative of the Site as a whole. Sample details are presented in Table 3. Logs of the cores collected during sampling are presented in Appendix D.

Sample receipt notifications outline that sample container conditions, labelling, and turnaround times were appropriate (Appendix B). The use of trip spikes to ensure the integrity of potential volatile contaminants in samples being transported to the laboratory was not deemed necessary for the purposes of this assessment.

02 6161 1762

contact@murrang.com.au

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 11 of 19



The absence of trip spikes is considered to have minimal effect on the outcome of this report as samples were received within the required holding times by the laboratory, limiting the time over which volatile contaminants could be lost from samples (Appendix B).

The potential for cross-contamination of samples during transport to the laboratory was considered low, with sample intactness assessed by SGS Environmental upon receipt of the samples at the laboratory. The use of a trip blank to measure cross-contamination in samples during sample transport was therefore deemed unnecessary and unlikely to affect the assessment of precision or accuracy of the analyses presented in this report. Samples were reported to be in good order upon receipt at the laboratory, indicating minimal risk of cross-contamination (Appendix B).





(b)

(a) Soil core collected from sample site 8, in the north-western corner of the Site. Soils were sands or clayey-sands, with poor horizon development in this location; and (b) soil core collected from sample site 10, in the lower parts of the Site, where silty clay soils with gravels occurred

> Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 12 of 19

02 6161 1762



| Sample   | Sample<br>depth (m bss) | Description                                                                                                  | Odours /<br>staining     | Comments                                                                |
|----------|-------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------|
| Sample 1 | 0.1–0.2                 | Sandy CLAY: Grey-brown sandy CLAY.<br>Fine, well-graded sands, no<br>discernible colour.                     | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                                  |
| Sample 1 | 0.3–0.4                 | Sandy CLAY: Light grey-brown CLAY;<br>Some fine gravels, subrounded, white<br>and brown.                     | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist. Very<br>sandy, almost<br>a sand. |
| Sample 2 | 0.1–0.2                 | Silty CLAY: Brown silty CLAY.                                                                                | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                                  |
| Sample 2 | 0.2–0.25                | Silty CLAY: Red-brown silty CLAY.                                                                            | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                                  |
| Sample 3 | 0.1–0.2                 | Silty CLAY: Brown silty CLAY.                                                                                | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                                  |
| Sample 3 | 0.2–0.3                 | Sandy CLAY: Light-brown sandy CLAY.<br>Some fine to coarse, subangular to<br>subrounded, grey-brown gravels. | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                                  |
| Sample 4 | 0.1–0.15                | Silty CLAY: Brown silty CLAY.                                                                                | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                                  |
| Sample 4 | 0.2–0.3                 | Sandy CLAY: Light-brown sandy CLAY.<br>Some fine to coarse, subangular to<br>subrounded, grey-brown gravels. | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                                  |

#### Table 3. Descriptions of samples collected and analysed from Lot 3 DP1118635, (41 King Street), Tarago

02 6161 1762



| Sample    | Sample<br>depth (m bss) | Description                                                                                                                    | Odours /<br>staining     | Comments                                                          |
|-----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|
| Sample 5  | 0.1–0.2                 | Sandy CLAY: Dark-brown CLAY;<br>Medium, highly graded sands,<br>(assumed to be) clear;                                         | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 5  | 0.3–0.4                 | Sandy CLAY: Grey-brown sandy CLAY;<br>fine highly graded sands.                                                                | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 6  | 0.1–0.2                 | Silty CLAY: Brown silty CLAY; some fine to coarse subangular gravels, white, brown, grey (colluvium).                          | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 6  | 0.2–0.3                 | Silty CLAY: Red-brown silty CLAY;<br>trace subrounded white gravels.                                                           | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 7  | 0.1–0.2                 | Silty CLAY: Brown silty CLAY.                                                                                                  | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 7  | 0.25–0.35               | Silty CLAY: Brown silty CLAY;<br>subrounded, fine to coarse gravels.                                                           | No staining, no<br>odour | Plant roots<br>and rootlets,<br>wet<br>(groundwater<br>ingress?). |
| Sample 8  | 0.1–0.2                 | Clayey SAND: well-graded, medium, rounded SANDS; brown clay.                                                                   | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 8  | 0.3–0.4                 | Clayey SAND: well-graded, medium,<br>rounded SANDS; brown clay; some<br>subangular to subrounded gravels<br>(possibly granite) | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 9  | 0.1–0.2                 | Sandy CLAY: brown CLAY; fine, rounded, clear sands.                                                                            | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 9  | 0.25–0.30               | Silty CLAY: red-brown CLAY.                                                                                                    | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 10 | 0.1–0.2                 | Silty CLAY: brown silty CLAY.                                                                                                  | No staining, no<br>odour | Plant roots<br>and rootlets,<br>moist.                            |
| Sample 10 | 0.30–0.35               | Silty CLAY: light-brown silty CLAY.                                                                                            | No staining, no<br>odour | Plant roots<br>and rootlets,<br>wet<br>(groundwater<br>ingress).  |



### 6.1.2 Laboratory quality assurance and quality control

Laboratory quality assurance and quality control procedures undertaken to assess sample integrity and analytical precision included the following:

- Sample receipt notifications outline sample temperatures, container conditions and appropriateness, labelling, and turnaround times, with the sample receipt notification for this site presented in Appendix B. All samples were received within required parameters, with the potential for contaminants of concern to have migrated from sample vessels or be impacted by transport conditions therefore minimised. This is with the exception of sample temperatures. The temperature of samples was 11.4°C at the time of receipt, which is above the maximum temperature guideline of 6°C specified within the ASC NEPM<sup>2</sup>. This indicates that there was potential for volatile chemicals to flux from samples during sample transport to the laboratory is considered minimal, however, as the sampled material was collected from surface soils, exposed to ambient temperatures of up to approximately 42°C. This indicates any volatile chemicals that had the potential to flux from the soils would have done so at environmental temperatures rather than those of the esky within which the samples were transported. The exceedance of temperature guidelines by samples during transport was therefore considered unlikely to have had a negative impact on analytical precision or accuracy in this instance.
- Holding times for sample extraction were met for all samples and all analytes.
- Laboratory practical quantitation limits (PQLs)/laboratory limits of reporting (LORs) were below the adopted guidelines in all cases (Section 4).
- Use of:
  - laboratory duplicates;
  - laboratory spikes;
  - o surrogates; and
  - o laboratory blanks

by SGS Environmental. Analytical methods, spikes, recoveries, acceptance criteria, practical quantitation limits (presented as limits of reporting (LOR), laboratory controls, laboratory blanks, and laboratory duplicates are presented in full within Appendix E, with all measures undertaken considered appropriate. Laboratory quality assurance and quality control targets were achieved for all samples and analyses with the following exceptions:

 $\circ$  Surrogate recovery of δ-14-p-terphenyl as part of carbamate analysis was 106%. SGS was contacted on 7 July 2023 regarding the proper interpretation of this result, with the conclusion being that with 100% being appropriate recovery for this analyte, the classification of 106% as an exceedance was incorrect.

Based on this information, the laboratory analyses conducted on the samples collected were considered accurate and precise.

Section A 1.5.2 in Appendix A outlines the basis for establishing the number and type of replicates to be collected for the purposes of this report, with one sample to be collected in triplicate. Sample 1 0.10–0.25 was collected in triplicate, with samples QC1 and QC2 the replicate samples. An additional sample, Sample 1 0.3–0.4, was collected in duplicate, with sample QC3 the replicate sample. Replicate samples were collected through partitioning equal volumes of soil into replicate jars from each depth, to minimise the influence of chemical

02 6161 1762



fractionating with depth, as is known to occur. The rate of replicate sampling attained was also considered appropriate to assess the quality of field and laboratory works undertaken for this report.

Analytical results from replicate samples was used to assess the cross contamination of samples in the field and to assess the laboratory analyses as precise and accurate.

The relative percentage difference in the concentration of all analytes in replicate samples was below the 30% guideline outlined in the ASC NEPM, with the exception of chromium, lead, nickel, and zinc concentrations (Table C2, Appendix C). The 30% guideline was exceeded by:

- 52% for lead in one instance (Sample 1 0.3–0.4 & QC3);
- by 4% and 42% for chromium (Sample 1 0.10–0.25 & QC1; and Sample 1 0.3–0.4 & QC3 respectively);
- by 70% for nickel in one instance (Sample 1 0.3–0.4 & QC3); and
- by 37% for zinc in one instance (Sample 1 0.3–0.4 & QC3).

These differences are considered to minor and a result of both sample heterogeneity and the low concentrations of these analytes in soils, as no problems with analytical accuracy and precision were noted by the laboratory.

Concentrations of all other contaminants of potential concern were below the laboratory limit of reporting in all replicates, with relative percentage differences between replicates therefore not able to be calculated for these analytes. Based on this information, the analyses by the laboratory for the purposes of this assessment is considered to be sufficiently accurate and precise for the purposes of this report.

### 6.2 Final conceptual site model

As stated in Section 1, under Schedule B1 (and others) of the ASC NEPM, potential risks associated with site contamination are constrained based on whether there are sources of contamination, receptors of this contamination, and if exposure and/or transport pathways between these sources and receptors are present or could be present. No sources of contamination were found to occur at the Site (Appendix C, Table C1). Based on this, no transport and exposure pathways between contamination sources and receptors of contamination occur at the Site. Full laboratory reports outlining results are presented in Appendix F.

### 6.3 Risk assessment and site suitability

Chemicals of concern at the Site were below the adopted assessment criteria in all cases (Appendix C, Table C1). No indications of contamination occurred at the Site. This, together with the adherence of all aspects of this limited detailed site investigation with the required quality assurance and quality control measures (Sections 6.1.1 and 6.1.2) is considered to mean that chemicals of concern do not present an unacceptable risk



to human health and environmental receptors at the Site. The site is suitable for its proposed residential and environmental use, with no remediation necessary at the Site to make it suitable for these uses.

#### 7. Compliance

The sampling and assessment undertaken at the Site is considered to have complied with the regulatory requirements set out in Section 5 and Appendix A as follows.

- An assessment of risk to human health and the environment from contaminants of concern at the Site is presented in Section 6.3. Based on this, the data quality objective "state the problem" was met.
- The goal of the study is addressed in Section 1 of this report, with the data quality objective "identify the goal of the study" therefore met.
- All information inputs outlined in the data quality objective "identify the information inputs" (e.g., site history, site interviews) were used to assess contamination at the Site.
- The Site was assessed within the boundaries, depths, and time frames stipulated in Appendix A, Section A.1.4 "Identify the boundaries of the study". This is with the exception of sample depths, which exceeded the stated depths in one instance, with this being the first location sampled. This was due to a lack of soil horizon development at this location, and the need to confirm an appropriate depth for identification of the B horizon was reached, if present.
- The analytical approach data quality objectives outlined in detail in Appendix A and presented as the Sampling and analysis quality plan in Section 5 were all achieved as follows:
  - Ten locations were sampled to a depth of 0.3 m bgs or the B horizon, whichever occurred first. 0 The DQO for the site was ten sample locations. Based on this, the analytical approach data quality objective for sample location numbers at the site were met.
  - Of the ten locations sampled, three were located in soils mapped as Slight Hill and seven soils 0 mapped as Morass soils. Based on this, the analytical approach data quality objective for soil representativeness at the site were met.
  - Samples were collected from both the A horizon and B horizon at all locations. Based on this, the 0 analytical approach data quality objective for soil representativeness at the site were met.
  - Samples were collected from the sample grid prepared for the Site (Figure 2). Based on this, the 0 analytical approach data quality objective for sample representativeness at the Site were met.
  - The collection of background samples was deemed unnecessary for the purposes of this limited 0 detailed site investigation.
    - No instruments were used in the field for the purposes of this limited detailed site investigation
- Duplicate samples were collected at a rate of one in 10 samples, and triplicate samples were collected at a rate of one in 20 samples. Based on this, the analytical approach data quality objective for replicates at the Site were met.
- A rinsate blank was collected from rinsate water run off both the inside and outside the blade of the hand auger used to excavate samples from the Site. Based on this, the analytical approach data quality objective for replicates at the site were met.
- Data representativeness was assessed through review of field work, and laboratory quality control and quality assurance measures in Sections 6.1.1 and 6.1.2. These sections indicate the data collected for the purposes of this report were representative of site conditions. It is considered unlikely an incorrect decision regarding the Site's suitability for its proposed use and its risk to human health and the environment has been made (see Appendix A, Section A.1.6 for further details). This limited detailed site investigation is considered to have met performance criteria.

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page 17 of 19

#### 02 6161 1762

contact@murrang.com.au

0

www.murrang.com.au ABN 96 162 928 958



- Collection of samples occurred through the use of a hand auger, as stipulated in data quality objective A.1.7, "Optimise the design for obtaining data". Geotagged photographs of each location were also collected and a tape measure was also used. This information indicates the data quality objective A.1.7 was met.
- The information in this report was compared to Table A.2, in Appendix A, which outlined the data quality indicators specified in NSW EPA's (2020) *"Consultants reporting on contaminated land"*. All data quality indicators met specifications.

Based on the information in this section, the information collected for the purposes of this limited detailed site investigation was sufficiently complete, comparable, representative, accurate, and precise to make reliable decisions with regards to risk and suitability of the site for its proposed use in relation to chemical contamination.

No instances of non-compliance are considered to have occurred in relation to regulatory requirements relating to the Site.

#### 8. Information gaps and limitations

The findings of this report are subject to the following information gaps and limitations:

- As this is a limited detailed site investigation, only a limited number of samples were collected.
- Soils are inherently variable. The concentration of chemicals within the soil can vary by several orders of magnitude within very small (i.e., less than one metre) distances across a landscape, with depth, between seasons, and from year to year. The chemical analyses of soil samples is a highly valuable and necessary indication of soil properties, but should be nonetheless viewed as indicative of soil conditions at a site at a given point in time, rather than absolute values. Correct implementation of the sampling regime further determines the reliability and utility of soil chemical analyses.
- Findings from the site inspection are based on what was observed on the day. Key areas throughout the Site were visited, but not every area of the Site could practicably be observed. This is considered to have low impact on the findings of this investigation, as aerial photographs and Google Earth imagery were used to corroborate the findings of the site inspection.
- No asbestos assessment relating to structures at the Site was undertaken as part of Site works.

### 9. Conclusions and recommendations

Murrang Earth Sciences was engaged by GroupOne to a limited detailed site investigation of 41 King Street (Lot 3 DP1118635), Tarago, NSW (the Site). This was due to the findings of Murrang Earth Sciences preliminary site investigation finding that two potential contamination sources occurred at the Site, with these being dust, cut, fill from railway ballast or nearby mine(s); and pesticide use as a result of agricultural activities. Ten locations were sampled at the Site as part of this limited detailed site investigation. Samples were collected from the A horizon (i.e., a depth of approximately 0.1 to 0.1 m below ground surface) and from the top of the B horizon (i.e., a depth of approximately 0.1 below ground surface and below) at each location, due to the sources of contamination at the Site being from the ground surface.



Chemicals of concern at the Site were below the adopted assessment criteria in all cases. No indications of contamination occurred at the Site. Based on this, chemicals of concern are considered to not present an unacceptable risk to human health and environmental receptors at the Site. The site is suitable for its proposed residential and environmental use, with no remediation necessary at the Site to make it suitable for these uses.

This report was reviewed by Dr Chris Gunton, a Certified Environmental Practitioner General (1044) and Site Contamination Specialist (SC41045) within the Site Contamination Practitioners Australia Scheme. A copy of this review is presented in Appendix G.

#### 10. References

- Jasonsmith, J.F. (2023). Preliminary site investigation, Lot 3 DP1118635, 41 King Street, Tarago NSW.
   Dated 2 June 2023. Murrang Earth Sciences, Canberra.
- National Environment Protection Council. (1999). National Environment Protection (Assessment of Site Contamination) Measure 1999: Guideline on Site Characterisation. Commonwealth of Australia, Canberra.
- 3. New South Wales Environment Protection Authority (2020) *Consultants reporting on contaminated sites.* NSW EPA, Sydney.
- Australian Bureau of Meteorology (2016). Maps of average conditions. Accessed on 24 May 2023 at: <a href="http://www.bom.gov.au/climate/averages/maps.shtml">http://www.bom.gov.au/climate/averages/maps.shtml</a>
- New South Wales Environment Protection Authority (2022) Sampling Design Part 1 application: contaminated land guidelines. NSW EPA, Sydney.
- Goulburn Mulwaree Regional Council (2021). Draft Tarago Village Strategy: Goulburn Mulwaree Regional Council – October 2021 – Draft V.3. Accessed on 18 May 2023 at:
   <a href="https://www.goulburn.nsw.gov.au/files/sharedassets/public/strategic-planning/draft-tarago-village-strategy-v.3-public-exhibition-october-2021.pdf">https://www.goulburn.nsw.gov.au/files/sharedassets/public/strategic-planning/draft-tarago-village-strategy-v.3-public-exhibition-october-2021.pdf</a>>

02 6161 1762



Appendix A. Data quality objectives and data quality indicators



#### A.1. Data quality objectives

Data quality objectives are the steps to be undertaken that will ensure the information collected for the purposes of the detailed site investigation will allow for the correct decisions to be made. The quality control objectives presented in Table 2(b) of NSW EPA's *"Consultants reporting on contaminated land"* were adopted for the purposes of this report (Table A.1).

Table A.1. Data quality objectives adopted from NSW EPA's "Consultants reporting on contaminated land"

| Data quality objectives                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|
| Step 1: State the problem                                                                                                       |
| Step 2: Identify the decision/goal of the study                                                                                 |
| Step 3: Identify the information inputs                                                                                         |
| Step 4: Define the boundaries of the study                                                                                      |
| Step 5: Develop the analytical approach                                                                                         |
| Step 6: Specify performance or acceptance criteria                                                                              |
| Step 7: Develop the plan for obtaining data                                                                                     |
| Are the data quality objectives linked to the conceptual site model, and have they been updated with the conceptual site model? |

### A.1.1 State the problem

Step One of the DQO process identifies the problem for which data needs to be collected. In the case of this detailed site investigation, the problem is:

• The risk to human health and the environment from contaminants at the concern needs to be substantiated using data

### A.1.2. Identify the goal of the study

Decisions that need to be made with regards to contamination are made in Step Two of the DQO process. The aims of this assessment are to assess whether soil contamination occurs in association with sources of

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A2 of 12



contamination associated with the Site and whether the Site is suitable for its proposed use. Based on this, the

following decisions need to be made:

- 1. Do chemicals of concern present an unacceptable risk to human health receptors at the Site
- 2. Do chemicals of concern present an unacceptable risk to environmental receptors at the Site
- 3. Is the site suitable for its proposed residential use
- 4. Is the site suitable for its environmental use
- 5. Does remediation need to occur for the site to be made suitable for its proposed residential use

### A.1.3. Identify the information inputs

The information required to make the decisions outlined in Step Two, above, is identified in Step Three of the

DQO Process. The information requirements were constrained to the following:

- Site observations
- Site identification
- Site history
- Present site condition
- Current and proposed land use
- Surrounding land-use
- Potential contamination sources
- Sensitive receptors
- Contaminant transport
- Contaminant exposure
- Concentrations of chemicals of concern in soils at the Site
- Conceptual site models
- Relevant legislation, including but not limited to regulations and guidelines
- Chain-of-custody
- Sample logs
- •

### A.1.4. Identify the boundaries of the study

Step Four of the DQO process requires the extent of the area to which the investigation applies to be outlined,

as well as any time requirements. The boundaries of this investigation are as follows:

- Area of environmental concern (AEC) 1, with the boundaries of this AEC in turn being the same as those for 41 King Street (Lot 3 DP1118635), Tarago, New South Wales.
- The date of sampling (27 June 2023).
- 0.3 m below ground surface—that is surface soils acting as a receptor to the contaminants of concern at the Site



### A.1.5. Develop the analytical approach

The approach to assessing the data to be collected as part of an investigation is outlined in Step Five of the DQO process. Data was to be collected for samples, replicates, and for a rinsate blank. Only analysis relating to the results delivered by Murrang Earth Sciences were to be assessed for the purposes of this report, with the selected laboratory, SGS Environmental, responsible for constraining the analytical approach for laboratory analyses (i.e., acceptable limits for matrix spikes, analyte recoveries, etc.), in accordance with their NATA accreditation. The data requirements for step 5 of the DQO process is outlined in the following sections.

### A.1.5.1 Samples

Analysis of the risk presented to human health and the environment by contaminants at the Site will occur through comparison of the concentrations of these chemicals in soils at the Site to the ASC NEPM's HIL A and EIL criteria (Section 2.1). If contaminant concentrations exceed these criteria, then an unacceptable risk to human health and/or environmental receptors from contaminants of concern in soils is considered to occur at the Site. Further investigation will be considered necessary.

Surface soils are the key receptor of contamination identified within Murrang Earth Sciences preliminary site investigation written for the Site, where deposition, placement, or transport of contaminants to the Site are the main transport pathways. The highest concentration of potential contaminants of concern was therefore expected to be close to or at the soil surface. Decreasing impact is expected to occur with increasing depth. Impacted surface soils also present the most likely contaminant exposure pathway to receptors. Based on this, samples from across AEC 1 (i.e., the Site) will be collected for the assessment of contaminants, with samples collected from the soil surface (i.e., up to 0.3 m). Soil samples were to be collected from the A horizon (approximately 0 to 0.1 m below ground surface) and the top of the B horizon (approximately below 0.1 metres below ground surface) separately, due to the different chemical properties of these soil strata. Samples were to be collected by Murrang Earth Sciences employee, Julia Jasonsmith.

New South Wales Environment Protection Authority's (2022) *"Sampling design guidelines – part 1: contaminated lands guidlelines"* (the NSW EPA guidelines) state that samples should be collected from at least 21 locations across a 1.0 ha area, with the Site being 1.0. Only limited evidence of potential contaminant sources was presented within Murrang Earth Sciences' preliminary site investigation of the Site, however, with only a limited number of samples at the Site justified. On this basis, samples were to be collected from 10 locations across the Site.

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A4 of 12

02 6161 1762



Two soil types are considered to occur at the Site. These are Morass and Slight Hill. The boundary between these soil types runs in a north-east-south-west direction in the western end of the Site, with approximately 70% of the Soils at the Site being Morass (Figure A.1.). Seven (i.e., 70%) of the soil samples that were to be collected from the Site were to be collected from the Morass soils that make up the greater portion of soils at the Site, with three samples to be collected from the Slight Hill Soils.

02 6161 1762

contact@murrang.com.au

WWW.MUITTANg.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A5 of 12




Figure A.1. Soil types at the Site, where 8827si indicates Slight Hill soils and 8827ms indicates Morass soils

The NSW EPA guidelines state:

'Systematic sampling is statistically unbiased as long as the coordinates of the first sampling location are determined randomly... In the assessment of site contamination, systematic sampling is usually done over a grid, although transects may be appropriate when lineal features are being assessed, such as the validation of former pipeline trenches. Gilbert 1987 notes that uniform coverage in many cases yields more accurate critical parameters of a contaminant distribution, such as the mean. NEPC 2013, B4 states that "systematic and grid sampling is used to search for hotspots and to infer means, percentiles or other parameters" '

Based on this, a site plan that included a grid was established for the Site (Figure A.2.). Each grid square was 55 m wide in both north-south and east-west directions. The '*RANDBETWEEN*' function in Microsoft Excel was used to provide random north-south and east-west grid numbers on this grid, with a new random number generated when the original number occurred outside the grid coordinates due to the irregular polygonal shape of the Site. An example of a grid number outside the grid coordinates, is for example, 2 (north-south), 6 (north-south). The sampling grid established to guide the location of the 10 samples to be collected from the Site is presented in Figure A.2., with samples to be collected from the centre of each grid square.

02 6161 1762

contact@murrang.com.au

WWW.MUITTANg.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A6 of 12







## A.1.5.2 Replicates

The influence of sample heterogeneity and the quality of laboratory analyses was to be reviewed through analysis of replicate samples. The ASC NEPM<sup>4</sup> states "the rate of blind replicates and split samples should be adjusted to an appropriate level to ensure sufficient quality assurance" to ascertain the representativeness and integrity of samples collected in the field and of laboratory analyses. One sample was to be collected in triplicate (i.e., two blind replicates of a primary sample) for the purposes of this report. Sample replication is to occur through splitting the collected soil equally between three jars (i.e., equal proportions of each soil layer are to occur in each replicate sample).

Relative percentage differences between contaminant concentrations in replicate samples was to be less than 30%. If relative percentage differences is greater than 30% then:

- sample heterogeneity must be considered a factor influencing contaminant concentrations; or
- the accuracy and precision of laboratory analysis needs to be reviewed.

# A.1.5.3. Rinsate blanks

The impact of cross-contamination on samples was to be assessed through analysis of a rinsate blank, collected off the hand-auger to be used at the Site and to be collected between sampling at different locations within the

02 6161 1762

contact@murrang.com.au



Site. The acceptable concentration of contaminants of concern in the rinsate blank sample was to be below the laboratory limit of reporting. If contaminant concentrations are greater than the laboratory limit of reporting in the rinsate blank, cross-contamination of samples is considered to have occurred and the influence of this on sample results must be discussed in relation to sample results.

# A.1.6. Specify performance or acceptance criteria

Decision errors are incorrect decisions caused by using data that is not representative of site conditions due to sampling or analytical error. As a result, a decision may be made that site clean-up is not needed when it is, or vice versa.

This detailed site investigation is considered to be Tier One of a three-tier assessment process. The risk of harm to human health and the environment was established using the ASC NEPM's HIL A and EIL guidelines as a conservative measure of potential risk, where an unacceptable risk of harm is found to occur at the Site when HIL A or HSL A criteria are exceeded. In the event criteria were exceeded, a Tier Two risk assessment would take place, where more information would be collected to constrain the risk more accurately and precisely.

The main impact of incorrectly deciding remedial action is required at a Site as a result of incorrectly concluding a site is not suitable for its proposed use is financial. In such a case, costs incurred through remediation activities would be unnecessarily borne by the Site owner.

The impact of deciding that action is not required where it is (i.e., contamination at the Site is not properly identified), will be potential harm to human health and/or the environment.

# A.1.7. Optimise the design for obtaining data

The seventh step of the DQO process involves identifying the most resource-effective sampling and analysis design for generating the data that can satisfy the DQOs. With sampling depths of up to 0.3 metres required, hand-augering is considered sufficient to reach the required sampling depths. The use of tape measures and geotagged photographs was also considered to be necessary, in order to accurately identify the location of samples and delineate contamination at the Site.

Neither portable photoionization detectors (PIDs) nor lethal explosivity limit meters (LELs) were to be used for the purposes of this limited detailed site investigation. This is because PIDs and LELs are designed for qualitative assessment of BTEX and volatile hydrocarbons, with longer carbon chain hydrocarbons instead of key concern for this report; and due to quantitative rather than qualitative measures of chemicals of concern being used to

02 6161 1762 contact@murrang.com.au Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A8 of 12



constrain chemical concentrations. Olfactory and visual signs of contamination will be recorded for soils assessed within this report.

# A.2. Data quality indicators

Data quality indicators are quantitative measures of the precision, accuracy, representativeness, completeness and comparability of data. The data quality indicators presented in NSW EPA (2020) were adopted for the purposes of this report, and are presented in Table B.2, below.

02 6161 1762

contact@murrang.com.au

WWW.MUITANg.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A9 of 12



Table B.2. Data quality indicators adopted for the purposes of this report from NSW EPA (2020)<sup>3</sup>

| Required information                                                                                                                                                                                                                                                             | Completeness | Comparability | Representativenes<br>s | Precision | Accuracy |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------------------|-----------|----------|
| Details of sampling team                                                                                                                                                                                                                                                         | Х            | Х             |                        |           |          |
| Reference to sampling plan/method, including any deviations from it – sampling and analysis quality plan                                                                                                                                                                         | Х            |               |                        |           |          |
| Any information that could be required to evaluate measurement uncertainty for subsequent testing (analysis)                                                                                                                                                                     |              |               |                        | х         | Х        |
| Decontamination procedures carried out between sampling events                                                                                                                                                                                                                   |              |               | х                      | Х         | Х        |
| Logs for each sample collected, including date, time, location (with GPS coordinates if possible), sampler, duplicate samples, chemical analyses to be performed, site observations and weather/environmental (i.e. surroundings) conditions. Include any diagrams, maps, photos |              | x             | х                      |           |          |
| Chain of custody fully identifying—for each sample—the sampler, nature of the sample, collection date,<br>analyses to be performed, sample preservation method, departure time from the site and dispatch courier(s)<br>(where applicable)                                       | Х            | х             |                        |           |          |
| Field quality assurance/quality control results (e.g. field blank, rinsate blank, trip blank, laboratory prepared trip spike)                                                                                                                                                    |              |               |                        | х         | Х        |
| Sample splitting techniques—subsampling, containers/preservation (ensure unique ID for subsequent samples provided)                                                                                                                                                              |              |               | х                      |           |          |
| Statement of duplicate frequency                                                                                                                                                                                                                                                 |              |               | х                      | Х         |          |

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A10 of 12 \_

\_

02 6161 1762

contact@murrang.com.au



| Required information                                                                                                                                           | Completeness | Comparability | Representativeness | Precision | Accuracy |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------------|-----------|----------|
| Background sample results                                                                                                                                      | Х            | Х             |                    |           |          |
| Field instrument calibrations (when used)                                                                                                                      |              |               |                    | Х         | Х        |
| Sampling devices and equipment                                                                                                                                 | Х            | Х             |                    |           |          |
| A copy of signed chain-of-custody forms acknowledging receipt date, time and laboratory analysis has temperature and identity of samples included in shipments | х            | х             |                    |           |          |
| Record of holding times and a comparison with method specifications                                                                                            | Х            | Х             |                    |           |          |
| Analytical methods used, including any deviations                                                                                                              | Х            | Х             |                    |           |          |
| Laboratory accreditation for analytical methods used, also noting any methods used which are not covered by accreditation                                      | Х            |               |                    |           | Х        |
| Laboratory performance for the analytical method using interlaboratory duplicates                                                                              |              | Х             |                    |           | Х        |
| Surrogate spikes used throughout the full method process, or only in parts. Results are corrected for recovery.                                                | Х            | Х             |                    |           |          |
| A list of what spikes and surrogates were run with their recoveries and acceptance criteria (tabulate)                                                         |              | Х             |                    |           | Х        |

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A11 of 12

02 6161 1762

contact@murrang.com.au



| Required information                                                                                                                                                   | Completeness | Comparability | Representativeness | Precision | Accuracy |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------------|-----------|----------|
| Practical quantification limits (PQL)                                                                                                                                  | Х            | Х             |                    |           |          |
| Reference laboratory control sample (LCS) and check results                                                                                                            | Х            |               |                    |           |          |
| Laboratory duplicate results (tabulate)                                                                                                                                | Х            |               |                    |           | Х        |
| Laboratory blank results (tabulate)                                                                                                                                    | Х            |               |                    |           | Х        |
| Results are within control chart limits                                                                                                                                | Х            |               |                    |           |          |
| Evaluation of all quality assurance/control information listed above against the stated data quality objectives, including a quality assurance/control data evaluation | х            | х             | х                  | х         | х        |

Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW 21 July 2023 Page A12 of 12

02 6161 1762

contact@murrang.com.au

WWW.MUTTANg.com.au ABN 96 162 928 958



Appendix B. Sample receipt notifications and chain-ofcustody documentation

02 6161 1762

contact@murrang.com.au

www.murrang.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page B1

| SGS                                                                                             |                     |        |                             | c                                              | Ţ                                  | Î                                                                                                                                                                              | Ŷ                                     |                     |                  | JUY             | 8                                            | ANALYSIS REQUEST                                      | 0               | UOTE       | # | QUOTE #: Irfan Sayeed 2/6/2023 |
|-------------------------------------------------------------------------------------------------|---------------------|--------|-----------------------------|------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|------------------|-----------------|----------------------------------------------|-------------------------------------------------------|-----------------|------------|---|--------------------------------|
| LAB CONTACT<br>Matthew.tyler@sgs.com                                                            |                     |        | CLIE                        | CLIENT DETAILS<br>Company: Murra               | ETAII                              | LS<br>Trang E                                                                                                                                                                  | arth Sci                              | ences               |                  |                 |                                              | PROJECT DETAILS                                       | -               |            |   |                                |
| Matthew.tyler@sgs.com<br>0285940400<br>16/33 Maddox Street<br>Alexandria, NSW 2015<br>Australia |                     |        | Cont<br>Ema<br>Cont<br>Cont | pany:<br>act: J<br>ll for i<br>tact n<br>act m | : Mur<br>ulia Ja<br>result<br>iumb | Company: Murrang Earth Sciences<br>Contact: Julia Jasonsmith<br>Email for results: julia.jasonsmith@murrang.com.au<br>Contact number: 0406621214<br>Contact mobile: 0406621214 | arth Sci<br>ith<br>1.jasons<br>662121 | ences<br>mith@      | mura             | ıg.com          | .au                                          | Client Reference: MES2167<br>Turnaround Required: STD | S2167<br>I: STD |            |   |                                |
| Client Sample ID                                                                                | Lab<br>Sample<br>ID | MATRIX | CONTAINERS                  | DATE                                           | TIME                               | Carbamates                                                                                                                                                                     | Synthetic pyrethroids                 | Triazine herbicides | SVOC Scheme 8270 | VOC Scheme 8260 | 8 Metals (As, Cd, Cu,<br>Cr, Hg, Ni, Pb, Zn) |                                                       |                 |            |   | Comments                       |
| Sample 1 (surface) 00-0-25                                                                      | -                   |        |                             | +                                              | $\downarrow$                       | $\backslash$                                                                                                                                                                   | $\backslash$                          | $\setminus$         |                  |                 |                                              |                                                       |                 | +          | + |                                |
| -                                                                                               | 2                   |        |                             | _                                              | N                                  |                                                                                                                                                                                |                                       |                     |                  |                 |                                              |                                                       |                 | +          | - |                                |
| Sample 2 (surface) 0.2 - c. 25                                                                  | ω                   |        |                             |                                                |                                    |                                                                                                                                                                                | $\backslash$                          |                     |                  |                 | 1                                            |                                                       |                 | -          | - |                                |
| Sample 2 c-1-0.2                                                                                | 4                   |        |                             |                                                |                                    |                                                                                                                                                                                |                                       |                     | -                |                 |                                              |                                                       |                 | _          | _ | SGS EHS Sydney COC             |
| 3 (surace) o                                                                                    | 5                   |        | rs                          | 3                                              | N                                  |                                                                                                                                                                                |                                       | /                   | /                | /               | /                                            |                                                       |                 | _          | _ | SE249904                       |
| 0 5                                                                                             | 0 0                 | Soil   | ss ja                       | 7/202                                          | A/A                                |                                                                                                                                                                                |                                       |                     |                  |                 | $\backslash$                                 |                                                       |                 |            |   |                                |
| Sample 4 0-2-6-3                                                                                | × +                 | 5      | Gla                         |                                                | 1                                  |                                                                                                                                                                                |                                       |                     | _                |                 | $\langle \rangle$                            |                                                       |                 | +          |   |                                |
| 5 (surface)                                                                                     | 9                   | •      |                             |                                                |                                    | $\backslash$                                                                                                                                                                   | $\backslash$                          | $\sum$              | _                |                 | $\backslash$                                 |                                                       |                 | +          | + |                                |
| Sample 5 0.3-04                                                                                 | 10                  |        |                             |                                                |                                    |                                                                                                                                                                                |                                       | _                   |                  |                 |                                              |                                                       |                 | +          | - |                                |
| QC1                                                                                             | =                   | _      |                             |                                                |                                    | 1                                                                                                                                                                              |                                       | Y                   | _                |                 |                                              |                                                       | _               | -          |   |                                |
| QC2                                                                                             | 11                  |        |                             |                                                |                                    |                                                                                                                                                                                |                                       | 1                   | _                |                 |                                              |                                                       | _               | -          | + |                                |
| Rinsate                                                                                         |                     | H2O    |                             | _                                              |                                    |                                                                                                                                                                                |                                       | _                   | -                |                 |                                              | )                                                     | _               | -          | - |                                |
| Relinquished By: Julia Jasonsmith                                                               |                     |        | Date/Time:                  | me:                                            | N                                  | 7/06                                                                                                                                                                           | 2                                     | S                   | -415             | 51              | _                                            | Received By:                                          | 0               | Date/Time: | 5 | 51213                          |
| Relinquished By:                                                                                |                     |        | Date/Time:                  | me:                                            |                                    |                                                                                                                                                                                |                                       |                     |                  |                 | _                                            | Received By:                                          | D               | Date/Time: | 0 | 0                              |
| *                                                                                               |                     |        |                             |                                                |                                    |                                                                                                                                                                                |                                       |                     |                  | LABOR           | ATOR                                         | LABORATORY SECTION                                    | -               |            |   |                                |
| Samples Intact: Yes/ No                                                                         |                     |        | Temperature:                | rature                                         |                                    |                                                                                                                                                                                | -                                     | 2                   |                  | 100             | n                                            | Sample Cooler Sealed Yes/ No                          | -               |            |   |                                |
| Sample Date:                                                                                    |                     |        | Comments:                   | ents:                                          |                                    |                                                                                                                                                                                | -                                     | -                   |                  |                 |                                              |                                                       | -               |            |   |                                |

source:

| Image: Solid                                                                                                                                                                                                                                  | Sample Date: | Samples Intact: Yes/ No |       | Relinquished By: | Relinquished By: Julia Jasonsmith | QC3  | Sample 10 0.3 - 535 | Sample 10 (surface) o. 1-04 | Sample 9 0.25-0.3 | Sample 9 (surface) 0.1~2 | Sample 8 0.3 - 0.4 | Sample 8 (surface) c .i -o.c | Sample 7 0-25-0-35 | Sample 7 (surface) 6, 1-0-2 | Sample 6 O . 2 - 0. 5 | Sample 6 (surface) o.1 - o. 2 | Client Sample ID                         | Matthew.tyler@sgs.com<br>0285940400<br>16/33 Maddox Street<br>Alexandria, NSW 2015<br>Australia | LAB CONTACT | 000    | 000  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|-------|------------------|-----------------------------------|------|---------------------|-----------------------------|-------------------|--------------------------|--------------------|------------------------------|--------------------|-----------------------------|-----------------------|-------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|-------------|--------|------|
| CHAN OF CUSTOPY & AMALYSIS REQUEST     Intege Nones<br>Contrait fuin sensition<br>materimobile: UN021211       CONTAINERS<br>Enal for results: Juliage Nones<br>Enal for results: Juli                                                                                                          |              |                         |       |                  |                                   | 24   | 23                  | 22                          | Y                 | 20                       | 1                  | 18                           | 4<br>K             | 16                          | 15                    | 14                            | Lab<br>Sample<br>ID                      |                                                                                                 |             |        |      |
| TAL     PROLECT DETALL       TALE     PROLECT DETALLS       INTRE Carbon Sources       Contre Reference: MESSLOF       Intraction Reformere: MESSLOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                         |       |                  |                                   |      |                     |                             |                   |                          | Soil               | I                            |                    |                             |                       |                               | MATRIX                                   | ]                                                                                               |             |        |      |
| TAL     PROLECT DETALL       TALE     PROLECT DETALLS       INTRE Carbon Sources       Contre Reference: MESSLOF       Intraction Reformere: MESSLOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comn         | Temp                    |       | Date/            | Date/                             |      |                     |                             |                   | Gla                      | iss j              | ars                          |                    |                             |                       |                               | CONTAINERS                               | Con<br>Con<br>Con                                                                               | CLIE        |        |      |
| TAL     PROLECT DETALL       TALE     PROLECT DETALLS       INTRE Carbon Sources       Contre Reference: MESSLOF       Intraction Reformere: MESSLOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nonte.       | eratur                  |       | Time:            | Time:                             |      |                     |                             |                   | 4/0                      | 7/20               | 023                          |                    |                             |                       |                               | DATE                                     | npany<br>tact: .<br>hil for<br>htact r<br>tact r                                                | ENT D       |        | 0    |
| PROJECT DETAILS<br>PROJECT DETAILS<br>Cirient Reference: MES2167<br>Turnaround Required: STD<br>Cr. Hg, Ni, P, P, Z, D<br>Cr. Hg, Ni, P, Z, D<br>Cr. Hg,             |              | e:                      |       |                  | 42                                |      |                     |                             |                   |                          | N/A                |                              |                    | N                           |                       |                               | TIME                                     | : Mur<br>Julia Ja<br>numbe<br>nobile                                                            | ETAIL       |        | HA   |
| PROJECT DETAILS<br>PROJECT DETAILS<br>Client Reference: MES2167<br>Turnaround Required: STD<br>Cr. Hg, Ni, PB, Zn<br>Cr. Hg, Ni, PB, Zn |              |                         |       |                  |                                   |      |                     | 1                           |                   | 1                        |                    | 1                            |                    | /                           |                       | 1                             | Carbamates                               | rang E<br>asonsm<br>s: juli<br>s: 040                                                           | S           |        | Z    |
| PROJECT DETAILS<br>PROJECT DETAILS<br>Client Reference: MES2167<br>Turnaround Required: STD<br>Cr. Hg, Ni, PB, Zn<br>Cr. Hg, Ni, PB, Zn |              |                         |       |                  |                                   |      |                     | 1                           |                   | 1                        |                    | 1                            |                    | /                           |                       |                               | Synthetic pyrethroids                    | arth Sc<br>nith<br>a.jason<br>06621221<br>5662121                                               |             |        | ę    |
| PROJECT DETAILS<br>PROJECT DETAILS<br>Client Reference: MES2167<br>Turnaround Required: STD<br>Cr. Hg, Ni, PB, Zn<br>Cr. Hg, Ni, PB, Zn |              |                         |       |                  |                                   |      |                     | /                           |                   |                          |                    | /                            |                    | /                           |                       |                               | Triazine herbicides                      | smith@<br>14                                                                                    |             |        | CU   |
| PROJECT DETAILS<br>PROJECT DETAILS<br>Client Reference: MES2167<br>Turnaround Required: STD<br>Cr. Hg, Ni, PB, Zn<br>Cr. Hg, Ni, PB, Zn |              |                         |       | _                | -                                 |      |                     |                             |                   |                          |                    | /                            |                    |                             |                       |                               | SVOC 8270                                | йтигга                                                                                          |             |        | STC  |
| PROJECT DETAILS<br>PROJECT DETAILS<br>Client Reference: MES2167<br>Turnaround Required: STD<br>Cr. Hg, Ni, PB, Zn<br>Cr. Hg, Ni, PB, Zn |              |                         | LABC  |                  | 2+                                |      |                     |                             |                   |                          |                    | 1                            |                    |                             |                       |                               | VOC 8260                                 | ing.con                                                                                         |             |        | B    |
| PROJECT DETALS PROJECT DETALS Client Reference: MES2167 Turnaround Required: STD  Comme Co                                                                                                                                                                                                          |              |                         | DRATO |                  | m                                 |      |                     |                             |                   |                          |                    | /                            | 1                  |                             | 1                     | $\square$                     | 8 Metals (As, Cd, Cu,<br>Cr Ha Ni Ph Zn) | n.au                                                                                            |             |        | 20   |
| PROJECT DETALS PROJECT DETALS Client Reference: MES2167 Turnaround Required: STD  Comme Co                                                                                                                                                                                                          |              | Samp                    | RY SE | Recei            | Recei                             |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               | 01, 11 <u>9</u> , 111, P0, 211)          |                                                                                                 |             |        | AN   |
| EST     QUOTE #: Irfan Sayeed 2/6/2023       ference: MES2167       nd Required: STD         Image: STD         Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | le Coole                | CTION | red By:          | ved By:                           |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          |                                                                                                 |             |        | ALY  |
| EST     QUOTE #: Irfan Sayeed 2/6/2023       ference: MES2167       nd Required: STD         Image: STD         Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | er Seale                |       |                  |                                   |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          |                                                                                                 |             |        | SIS  |
| EST     QUOTE #: Irfan Sayeed 2/6/2023       ference: MES2167       nd Required: STD         Image: STD         Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | id: Ye                  |       |                  | T                                 |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          | Clier                                                                                           | PRO         |        | RE   |
| LS<br>INES2167<br>uired: STD<br>Uired: STD<br>Uired: STD<br>Comme<br>Comme<br>DaterTime: RY /( C 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | s / No                  |       |                  | 5                                 |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          | nt Refe                                                                                         | JECT        |        | QU   |
| LS<br>INES2167<br>uired: STD<br>Uired: STD<br>Uired: STD<br>Comme<br>Comme<br>DaterTime: RY /( C 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                         |       | -                | 3.                                |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          | erence<br>nd Req                                                                                | DETA        |        | EST  |
| Comme<br>Comme<br>Comme<br>Date/Time: RX/( () ()<br>Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                         |       |                  |                                   |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          | e: MES:<br>Juired:                                                                              | ILS         |        |      |
| Trage 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                         |       | D                | D                                 |      | -                   | _                           | _                 | _                        | _                  | _                            | _                  |                             |                       |                               |                                          | 2167<br>STD                                                                                     |             | Q      | 1    |
| Trage 2 of 2<br>#: Irfan Sayeed 2/6/2023<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                         |       | te/Time          | ate/Time                          |      | -                   | _                           | _                 | _                        | -                  | -                            | _                  | _                           | _                     | -                             |                                          |                                                                                                 |             | UOTE   |      |
| an Sayeed 2/6/2023<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                         |       |                  | ŀ                                 | <br> | -                   |                             | _                 | _                        | _                  | _                            | _                  | -                           |                       | -                             |                                          |                                                                                                 |             | #: Inf |      |
| ayeed 2/6/2023<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                         |       |                  | 20                                |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          |                                                                                                 |             | an S   |      |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                         |       |                  | 16                                |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          |                                                                                                 |             | ayee   | Page |
| I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                         |       | 1                | 6                                 |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               | Q                                        |                                                                                                 |             | d 2/6  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                         |       |                  | _                                 |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               | omme                                     |                                                                                                 |             | 12023  | of 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                         |       |                  | 1.5                               |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               | ents                                     |                                                                                                 |             |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                         |       |                  | 0                                 |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          |                                                                                                 |             |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                         |       |                  |                                   |      |                     |                             |                   |                          |                    |                              |                    |                             |                       |                               |                                          |                                                                                                 |             |        |      |

### Thanks Irfan,

the list is:

| 8 Metals           |  |
|--------------------|--|
| OC/OP pesticides   |  |
| Carbamates         |  |
| Pyrethroids        |  |
| Triazine herbicies |  |

| <br>2,4,5 T |                                       |
|-------------|---------------------------------------|
| <br>2,4 D   | · · · · · · · · · · · · · · · · · · · |
| МСРА        |                                       |
| МСРВ        |                                       |
| Месоргор    | a                                     |
| Picloram*   |                                       |

Surely I am not the only one asking for such analyses -- these are just the ASC NEPM pesticides... ? So interesting if I am.

Jules

Dr Julia Jasonsmith



Director and Environmental Chemist Murrang Earth Sciences

Honorary Lecturer Fenner School of Environment and Society Australian National University

T: <u>+61 2 6161 1762</u> M: <u>+61 406 621 214</u> E: <u>Julia.Jasonsmith@murrang.com.au</u> W: <u>http://www.murrang.com.au</u> Tw: @MurrangEarthSci

Ngunnawal Country, GPO Box 2310, CANBERRA 2601

Murrang is the Wiradjuri word for mud. Murrang Earth Sciences is grateful to the Wiradjuri people for their language. Our offices are proudly located on Ngunnawal country in Canberra. We acknowledge the Traditional Owners of the land on which we work, and their knowledge, culture, and spiritual connection to Country.

Cc: Luong, Thi Song Van (Sydney) <ThiSongVan.Luong@sgs.com> Subject: RE: [EXTERNAL] Re: SE249904 MES2167

Thanks Julia. Will add it for analysis. Do you need Phenoxy Acid Herbicides done for these samples? please advise as soon as possible. Thank You.

Regards,

Emily Yin Environment, Health & Safety Sample Receipt

SGS Australia Pty Ltd Unit 16, 33 Maddox Street Alexandria NSW 2015

 Phone:
 +61 (0)2 8594 0400

 Fax:
 +61 (0)2 8594 0499

 E-mail:
 au.samplereceipt.sydney@sgs.com

From: Julia Jasonsmith <julia.jasonsmith@murrang.com.au> Sent: Wednesday, 28 June 2023 3:54 PM To: Yin, Emily (Sydney) <Emily.Yin@sgs.com> Cc: Luong, Thi Song Van (Sydney) <ThiSongVan.Luong@sgs.com> Subject: [EXTERNAL] Re: SE249904 MES2167

\*\*\* WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. \*\*\*

X.

n and a second second

Yes please, thanks for asking Emily. For 8 metals please.

Jules

Dr Julia Jasonsmith



Director and Environmental Chemist Murrang Earth Sciences

Honorary Lecturer Fenner School of Environment and Society Australian National University

T: <u>+ 61 2 6161 1762</u> M: <u>+61 406 621 214</u> E: <u>Julia.Jasonsmith@murrang.com.au</u>



## SAMPLE RECEIPT ADVICE

| CLIENT DETAILS | S                                 | LABORATORY DETA  | ILS                                          | _ |
|----------------|-----------------------------------|------------------|----------------------------------------------|---|
| Contact        | Julia Jasonsmith                  | Manager          | Huong Crawford                               |   |
| Client         | MURRANG EARTH SCIENCES PTY LTD    | Laboratory       | SGS Alexandria Environmental                 |   |
| Address        | GPO BOX 2310<br>CANBERRA ACT 2601 | Address          | Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |   |
| Telephone      | 0406 621 214                      | Telephone        | +61 2 8594 0400                              |   |
| Facsimile      | (Not specified)                   | Facsimile        | +61 2 8594 0499                              |   |
| Email          | julia.jasonsmith@murrang.com.au   | Email            | au.environmental.sydney@sgs.com              |   |
| Project        | MES2167                           | Samples Received | Wed 28/6/2023                                |   |
| Order Number   | MES2167                           | Report Due       | Wed 5/7/2023                                 |   |
| Samples        | 24                                | SGS Reference    | SE249904                                     |   |

\_ SUBMISSION DETAILS

This is to confirm that 24 samples were received on Wednesday 28/6/2023. Results are expected to be ready by COB Wednesday 5/7/2023. Please quote SGS reference SE249904 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 23 Soil, 1 Water 28/6/2023 Yes SGS Yes Ice Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 11.4°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS ·

Phenoxy Acid Herbicides subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

ıstralia t +61 2 8594 0400 ıstralia f +61 2 8594 0499

www.sgs.com.au



CLIENT DETAILS \_

#### Client MURRANG EARTH SCIENCES PTY LTD

Project MES2167

| No. | Sample ID          | Carbamates in Soil | OC Pesticides in Soil | OP Pesticides in Soil | Pesticides / Herbicides in<br>Soils by LC-MS/MS | Synthetic Pyrethroids in<br>Soil | Total Recoverable<br>Elements in Soil/Waste | Triazines in Soil | VOC's in Soil |
|-----|--------------------|--------------------|-----------------------|-----------------------|-------------------------------------------------|----------------------------------|---------------------------------------------|-------------------|---------------|
| 001 | Sample 1 0.1-0.25  | 3                  | 30                    | 14                    | 19                                              | 8                                | 7                                           | 10                | 79            |
| 002 | Sample 1 0.3-0.4   | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 003 | Sample 2 0.1-0.25  | 3                  | -                     | -                     | -                                               | 8                                | 7                                           | 10                | -             |
| 004 | Sample 2 0.1-0.2   | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 005 | Sample 3 0.1-0.2   | 3                  | 30                    | 14                    | 19                                              | 8                                | 7                                           | 10                | 79            |
| 006 | Sample 3 0.2-0.3   | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 007 | Sample 4 0.1-0.15  | 3                  | -                     | -                     | -                                               | 8                                | 7                                           | 10                | -             |
| 800 | Sample 4 0.2-0.3   | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 009 | Sample 5 0.1-0.4   | 3                  | -                     | -                     | -                                               | 8                                | 7                                           | 10                | -             |
| 010 | Sample 5 0.3-0.4   | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 011 | QC1                | 3                  | -                     | -                     | -                                               | -                                | 7                                           | 10                | -             |
| 012 | QC2                | 3                  | -                     | -                     | -                                               | -                                | 7                                           | 10                | -             |
| 014 | Sample 6 0.1-0.2   | 3                  | 30                    | 14                    | 19                                              | 8                                | 7                                           | 10                | 79            |
| 015 | Sample 6 0.2-0.3   | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 016 | Sample 7 0.1-0.2   | 3                  | -                     | -                     | -                                               | 8                                | 7                                           | 10                | -             |
| 017 | Sample 7 0.25-0.35 | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 018 | Sample 8 0.1-0.2   | 3                  | 30                    | 14                    | 19                                              | 8                                | 7                                           | 10                | 79            |
| 019 | Sample 8 0.3-0.4   | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 020 | Sample 9 0.1-0.2   | 3                  | -                     | -                     | -                                               | 8                                | 7                                           | 10                | -             |
| 021 | Sample 9 0.25-0.3  | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 022 | Sample 10 0.1-0.2  | 3                  | 30                    | 14                    | 19                                              | 8                                | 7                                           | 10                | 79            |
| 023 | Sample 10 0.3-0.35 | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |
| 024 | QC3                | -                  | -                     | -                     | -                                               | -                                | 7                                           | -                 | -             |

\_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



CLIENT DETAILS \_

#### Client MURRANG EARTH SCIENCES PTY LTD

Project MES2167

| No. | Sample ID          | Mercury (dissolved) in<br>Water | Mercury in Soil | Moisture Content | Trace Metals (Dissolved)<br>in Water by ICPMS |
|-----|--------------------|---------------------------------|-----------------|------------------|-----------------------------------------------|
| 001 | Sample 1 0.1-0.25  | -                               | 1               | 1                | -                                             |
| 002 | Sample 1 0.3-0.4   | -                               | 1               | 1                | -                                             |
| 003 | Sample 2 0.1-0.25  | -                               | 1               | 1                | -                                             |
| 004 | Sample 2 0.1-0.2   | -                               | 1               | 1                | -                                             |
| 005 | Sample 3 0.1-0.2   | -                               | 1               | 1                | -                                             |
| 006 | Sample 3 0.2-0.3   | -                               | 1               | 1                | -                                             |
| 007 | Sample 4 0.1-0.15  | -                               | 1               | 1                | -                                             |
| 008 | Sample 4 0.2-0.3   | -                               | 1               | 1                | -                                             |
| 009 | Sample 5 0.1-0.4   | -                               | 1               | 1                | -                                             |
| 010 | Sample 5 0.3-0.4   | -                               | 1               | 1                | -                                             |
| 011 | QC1                | -                               | 1               | 1                | -                                             |
| 012 | QC2                | -                               | 1               | 1                | -                                             |
| 013 | Rinsate            | 1                               | -               | -                | 7                                             |
| 014 | Sample 6 0.1-0.2   | -                               | 1               | 1                | -                                             |
| 015 | Sample 6 0.2-0.3   | -                               | 1               | 1                | -                                             |
| 016 | Sample 7 0.1-0.2   | -                               | 1               | 1                | -                                             |
| 017 | Sample 7 0.25-0.35 | -                               | 1               | 1                | -                                             |
| 018 | Sample 8 0.1-0.2   | -                               | 1               | 1                | -                                             |
| 019 | Sample 8 0.3-0.4   | -                               | 1               | 1                | -                                             |
| 020 | Sample 9 0.1-0.2   | -                               | 1               | 1                | -                                             |
| 021 | Sample 9 0.25-0.3  | -                               | 1               | 1                | -                                             |
| 022 | Sample 10 0.1-0.2  | -                               | 1               | 1                | -                                             |
| 023 | Sample 10 0.3-0.35 | -                               | 1               | 1                | -                                             |

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .



# Appendix C. Sample analytical results

02 6161 1762

contact@murrang.com.au

WWW.MUTTANG.COM.AU ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page C1



|                                       | Eight              | metals             |
|---------------------------------------|--------------------|--------------------|
| Guideline                             | Arsenic<br>(mg/kg) | Cadmium<br>(mg/kg) |
| ASC NEPM HIL A                        | 100                | 20                 |
| ASC NEPM EIL<br>(aged in urban soils) | 50                 | N/A                |
| Laboratory LOR                        | 1.0                | 0.3                |

|                    |             |                             |                         |                    | Eight metals       |
|--------------------|-------------|-----------------------------|-------------------------|--------------------|--------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Arsenic<br>(mg/kg) | Cadmium<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | 1                  | < 0.3              |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | 1                  | <0.3               |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | 1                  | < 0.3              |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | <1                 | < 0.3              |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | 3                  | <0.3               |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | 7                  | < 0.3              |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | 9                  | < 0.3              |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | 1                  | <0.3               |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | 2                  | <0.3               |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | 1                  | < 0.3              |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | 1                  | < 0.3              |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | 5                  | < 0.3              |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | 4                  | < 0.3              |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | 2                  | < 0.3              |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | 2                  | < 0.3              |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | 2                  | < 0.3              |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | 2                  | < 0.3              |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | 1                  | < 0.3              |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | 1                  | <0.3               |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | 5                  | <0.3               |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | 10                 | <0.3               |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | 4                  | <0.3               |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | 4                  | <0.3               |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | <1                 | <0.1               |



|                                       | Eight metals        |                   |                 |                   |                 |  |  |
|---------------------------------------|---------------------|-------------------|-----------------|-------------------|-----------------|--|--|
| Guideline                             | Chromium<br>(mg/kg) | Copper<br>(mg/kg) | Lead<br>(mg/kg) | Nickel<br>(mg/kg) | Zinc<br>(mg/kg) |  |  |
| ASC NEPM HIL A                        | 100 <sup>a</sup>    | 6000              | 300             | 400               | 7400            |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                 | N/A               | 270             | N/A               | N/A             |  |  |
| Laboratory LOR                        | 0.5                 | 0.5               | 1.0             | 0.5               | 2.0             |  |  |

|                    |             |                             |                         |                     |                   |                 | Eight metals      |                 |
|--------------------|-------------|-----------------------------|-------------------------|---------------------|-------------------|-----------------|-------------------|-----------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Chromium<br>(mg/kg) | Copper<br>(mg/kg) | Lead<br>(mg/kg) | Nickel<br>(mg/kg) | Zinc<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | 3.7                 | 4                 | 10              | 0.6               | 17              |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | 5.2                 | 3.9               | 9               | 0.7               | 14              |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | 4.1                 | 4.2               | 10              | 0.7               | 17              |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | 5.2                 | 0.9               | 5               | 0.5               | 3               |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | 11                  | <0.5              | 12              | 1.5               | 6               |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | 14                  | 5.9               | 16              | 4.7               | 22              |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | 21                  | 4.5               | 15              | 8.6               | 16              |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | 7                   | 3.5               | 10              | 1                 | 13              |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | 7.5                 | 1.3               | 8               | 1                 | 6               |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | 8.9                 | 3.7               | 11              | 0.9               | 18              |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | 5.8                 | 3.2               | 9               | 0.8               | 9               |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | 4.8                 | 6.1               | 15              | 1.3               | 19              |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | 4.5                 | 1.3               | 8               | 0.9               | 3               |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | 9.3                 | 1.2               | 6               | 1.2               | 4               |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | 7.6                 | 2.9               | 11              | 0.7               | 11              |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | 8.8                 | 3.6               | 12              | 1.3               | 13              |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | 14                  | 1.8               | 10              | 2                 | 5               |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | 1.8                 | 6.9               | 12              | 0.5               | 18              |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | 2.3                 | 5.2               | 8               | <0.5              | 7               |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | 12                  | 5.6               | 17              | 1.4               | 22              |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | 18                  | 3.9               | 14              | 3.5               | 16              |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | 8.8                 | 4                 | 11              | 1.2               | 20              |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | 9                   | 2                 | 9               | 1                 | 4               |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | <1                  | <1                | <1              | <1                | <5              |



|                    |             |                             |                                       |                    |                     | Organochlori        | ne pesticides       |                     |
|--------------------|-------------|-----------------------------|---------------------------------------|--------------------|---------------------|---------------------|---------------------|---------------------|
|                    |             |                             | Guideline                             | Mercury<br>(mg/kg) | p,p'-DDD<br>(mg/kg) | o,p'-DDD<br>(mg/kg) | p,p'-DDE<br>(mg/kg) | o,p'-DDE<br>(mg/kg) |
|                    |             |                             | ASC NEPM HIL A                        | 10 <sup>b</sup>    | N/A                 | N/A                 | N/A                 | N/A                 |
|                    |             |                             | ASC NEPM EIL<br>(aged in urban soils) | N/A                | N/A                 | N/A                 | N/A                 | N/A                 |
|                    |             |                             | Laboratory LOR                        | 0.05               | 0.1                 | 0.1                 | 0.1                 | 0.1                 |
|                    |             |                             |                                       | 0.05               |                     |                     |                     |                     |
|                    |             |                             |                                       |                    | J                   | Organochlori        | ne pesticides       |                     |
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs)               | Mercury<br>(mg/kg) | p,p'-DDD<br>(mg/kg) | o,p'-DDD<br>(mg/kg) | p,p'-DDE<br>(mg/kg) | o,p'-DDE<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25                             | < 0.05             | <0.1                | <0.1                | <0.1                | <0.1                |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20                             | < 0.05             | <0.1                | <0.1                | <0.1                | <0.1                |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40                             | 0.12               | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20                             | < 0.05             | <0.1                | <0.1                | <0.1                | <0.1                |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20                             | < 0.05             | <0.1                | <0.1                | <0.1                | <0.1                |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                              | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20                             | < 0.05             | <0.1                | <0.1                | <0.1                | <0.1                |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35                             | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                                   | < 0.0001           | N.A.                | N.A.                | N.A.                | N.A.                |



|                                       | Organochlorine pesticides |                     |                            |  |  |
|---------------------------------------|---------------------------|---------------------|----------------------------|--|--|
| Guideline                             | p,p'-DDT<br>(mg/kg)       | o,p'-DDT<br>(mg/kg) | DDT+DDE+<br>DDD<br>(mg/kg) |  |  |
| ASC NEPM HIL A                        | N/A                       | N/A                 | 240                        |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | 180                       | 180                 | N/A                        |  |  |
| Laboratory LOR                        | 0.1                       | 0.1                 | N/A                        |  |  |

|                    |             |                             |                         | Org                 | anochlorine pe      | sticides                   |
|--------------------|-------------|-----------------------------|-------------------------|---------------------|---------------------|----------------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | p,p'-DDT<br>(mg/kg) | o,p'-DDT<br>(mg/kg) | DDT+DDE+<br>DDD<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.1                | <0.1                | N.A.                       |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                | N.A.                | N.A.                       |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                | N.A.                | N.A.                       |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                | N.A.                | N.A.                       |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                | N.A.                | N.A.                       |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                | N.A.                | N.A.                       |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.                | N.A.                | N.A.                       |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.1                | <0.1                | N.A.                       |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                | N.A.                | N.A.                       |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.                | N.A.                | N.A.                       |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                | N.A.                | N.A.                       |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.                | N.A.                | N.A.                       |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                | N.A.                | N.A.                       |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.1                | <0.1                | N.A.                       |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                | N.A.                | N.A.                       |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.                | N.A.                | N.A.                       |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                | N.A.                | N.A.                       |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.1                | <0.1                | N.A.                       |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                | N.A.                | N.A.                       |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.                | N.A.                | N.A.                       |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                | N.A.                | N.A.                       |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.1                | <0.1                | N.A.                       |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                | N.A.                | N.A.                       |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                | N.A.                | N.A.                       |



|                                       | Organochlorine pesticides |                     |                                   |                                 |                                 |                      |  |  |  |
|---------------------------------------|---------------------------|---------------------|-----------------------------------|---------------------------------|---------------------------------|----------------------|--|--|--|
| Guideline                             | Aldrin<br>(mg/kg)         | Dieldrin<br>(mg/kg) | Aldrin and<br>dieldrin<br>(mg/kg) | Chlordane<br>(alpha)<br>(mg/kg) | Chlordane<br>(gamma)<br>(mg/kg) | Chlordane<br>(mg/kg) |  |  |  |
| ASC NEPM HIL A                        | N/A                       | N/A                 | 6                                 | 50                              | 50                              | 50                   |  |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                       | N/A                 | N/A                               | N/A                             | N/A                             | N/A                  |  |  |  |
| Laboratory LOR                        | 0.1                       | 0.2                 | N/A                               | 0.1                             | 0.1                             | N/A                  |  |  |  |

|                    |             |                             |                         |                   |                     | Organochlorin                     | e pesticides                    |                                 |                      |
|--------------------|-------------|-----------------------------|-------------------------|-------------------|---------------------|-----------------------------------|---------------------------------|---------------------------------|----------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Aldrin<br>(mg/kg) | Dieldrin<br>(mg/kg) | Aldrin and<br>dieldrin<br>(mg/kg) | Chlordane<br>(alpha)<br>(mg/kg) | Chlordane<br>(gamma)<br>(mg/kg) | Chlordane<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.1              | <0.2                | N.A.                              | <0.1                            | <0.1                            | N.A                  |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.1              | <0.2                | N.A.                              | <0.1                            | <0.1                            | N.A                  |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.1              | <0.2                | N.A.                              | <0.1                            | <0.1                            | N.A                  |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.1              | <0.2                | N.A.                              | <0.1                            | <0.1                            | N.A                  |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.1              | <0.2                | N.A.                              | <0.1                            | <0.1                            | N.A                  |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.              | N.A.                | N.A.                              | N.A.                            | N.A.                            | N.A                  |



|                                       | Organochlorine pesticides      |                            |                               |                                  |                   |  |  |
|---------------------------------------|--------------------------------|----------------------------|-------------------------------|----------------------------------|-------------------|--|--|
| Guideline                             | Alpha<br>endosulfan<br>(mg/kg) | Beta endosulfan<br>(mg/kg) | Endosulfan<br>sulfate (mg/kg) | Endosulfan<br>(total)<br>(mg/kg) | Endrin<br>(mg/kg) |  |  |
| ASC NEPM HIL A                        | 270                            | 270                        | 270                           | 270                              | 10                |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                            | N/A                        | N/A                           | N/A                              | N/A               |  |  |
| Laboratory LOR                        | 0.2                            | 0.2                        | 0.1                           | N/A                              | 0.2               |  |  |

|                    |             |                             |                         |                                | Orgai                      | nochlorine pesticio           | des                              |                   |
|--------------------|-------------|-----------------------------|-------------------------|--------------------------------|----------------------------|-------------------------------|----------------------------------|-------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Alpha<br>endosulfan<br>(mg/kg) | Beta endosulfan<br>(mg/kg) | Endosulfan<br>sulfate (mg/kg) | Endosulfan<br>(total)<br>(mg/kg) | Endrin<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.2                           | <0.2                       | <0.1                          | N.A.                             | <0.2              |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.2                           | <0.2                       | <0.1                          | N.A.                             | <0.2              |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.2                           | <0.2                       | <0.1                          | N.A.                             | <0.2              |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.2                           | <0.2                       | <0.1                          | N.A.                             | <0.2              |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.2                           | <0.2                       | <0.1                          | N.A.                             | <0.2              |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                           | N.A.                       | N.A.                          | N.A.                             | N.A.              |



|                                       | Organochlorine pesticides |                    |                      |                     |                      |  |  |
|---------------------------------------|---------------------------|--------------------|----------------------|---------------------|----------------------|--|--|
| Guideline                             | Heptachlor<br>(mg/kg)     | Lindane<br>(mg/kg) | Delta BHC<br>(mg/kg) | Beta BHC<br>(mg/kg) | Nonachlor<br>(mg/kg) |  |  |
| ASC NEPM HIL A                        | 6                         | N/A                | N/A                  | N/A                 | N/A                  |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                       | N/A                | N/A                  | N/A                 | N/A                  |  |  |
| Laboratory LOR                        | 0.1                       | 0.1                | 0.1                  | 0.1                 | 0.1                  |  |  |

|                    |             |                             |                         |                       | Ore                | anochlorine pestic   | ides                |                      |
|--------------------|-------------|-----------------------------|-------------------------|-----------------------|--------------------|----------------------|---------------------|----------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Heptachlor<br>(mg/kg) | Lindane<br>(mg/kg) | Delta BHC<br>(mg/kg) | Beta BHC<br>(mg/kg) | Nonachlor<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.1                  | <0.1               | <0.1                 | <0.1                | <0.1                 |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.1                  | <0.1               | <0.1                 | <0.1                | <0.1                 |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.1                  | <0.1               | <0.1                 | <0.1                | <0.1                 |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.1                  | <0.1               | <0.1                 | <0.1                | <0.1                 |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.1                  | <0.1               | <0.1                 | <0.1                | <0.1                 |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |



|                                       | Organochlorine pesticides |                |                         |                  |                                          |  |  |  |
|---------------------------------------|---------------------------|----------------|-------------------------|------------------|------------------------------------------|--|--|--|
| Guideline                             | lsodrin<br>(mg/kg)        | HCB<br>(mg/kg) | Methoxychlor<br>(mg/kg) | Mirex<br>(mg/kg) | Total OC<br>Pesticides<br>CLP<br>(mg/kg) |  |  |  |
| ASC NEPM HIL A                        | N/A                       | 10             | 300                     | 10               | N/A                                      |  |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                       | N/A            | N/A                     | N/A              | N/A                                      |  |  |  |
| Laboratory LOR                        | 0.1                       | 0.1            | 0.1                     | 0.1              | 1.0                                      |  |  |  |

|                    |             |                             |                         |                    | Organochlo     | rine pesticides         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|-------------|-----------------------------|-------------------------|--------------------|----------------|-------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | lsodrin<br>(mg/kg) | HCB<br>(mg/kg) | Methoxychlor<br>(mg/kg) | Mirex<br>(mg/kg) | Total OC<br>Pesticides<br>CLP<br>(mg/kg)           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0           <1.0 |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.1               | <0.1           | <0.1                    | <0.1             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.1               | <0.1           | <0.1                    | <0.1             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.1               | <0.1           | <0.1                    | <0.1             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.1               | <0.1           | <0.1                    | <0.1             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.1               | <0.1           | <0.1                    | <0.1             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.               | N.A.           | N.A.                    | N.A.             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



|                                       | Organophosphate pesticides |                       |                       |                     |  |  |  |
|---------------------------------------|----------------------------|-----------------------|-----------------------|---------------------|--|--|--|
| Guideline                             | Chlorpyrifos<br>(mg/kg)    | Dichlorvos<br>(mg/kg) | Dimethoate<br>(mg/kg) | Diazinon<br>(mg/kg) |  |  |  |
| ASC NEPM HIL A                        | 160                        | N/A                   | N/A                   | N/A                 |  |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                        | N/A                   | N/A                   | N/A                 |  |  |  |
| Laboratory LOR                        | 0.2                        | 0.5                   | 0.5                   | 0.5                 |  |  |  |

|                    |             |                             |                         |                         | Organophosp           | hate pesticides       |                     |
|--------------------|-------------|-----------------------------|-------------------------|-------------------------|-----------------------|-----------------------|---------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Chlorpyrifos<br>(mg/kg) | Dichlorvos<br>(mg/kg) | Dimethoate<br>(mg/kg) | Diazinon<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.2                    | <0.5                  | <0.5                  | <0.5                |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.2                    | <0.5                  | <0.5                  | <0.5                |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.2                    | <0.5                  | <0.5                  | <0.5                |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.2                    | <0.5                  | <0.5                  | <0.5                |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.2                    | <0.5                  | <0.5                  | <0.5                |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                    | N.A.                  | N.A.                  | N.A.                |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                    | N.A.                  | N.A.                  | N.A.                |



|                                       | Organophosphate pesticides |                      |                      |                            |  |  |  |
|---------------------------------------|----------------------------|----------------------|----------------------|----------------------------|--|--|--|
| Guideline                             | Fenitrothion<br>(mg/kg)    | Malathion<br>(mg/kg) | Parathion<br>(mg/kg) | Bromophos ethyl<br>(mg/kg) |  |  |  |
| ASC NEPM HIL A                        | N/A                        | N/A                  | N/A                  | N/A                        |  |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                        | N/A                  | N/A                  | N/A                        |  |  |  |
| Laboratory LOR                        | 0.2                        | 0.2                  | 0.2                  | 0.2                        |  |  |  |

|                    |             |                             |                         |                         | Organophospl         | nate pesticides      |                            |
|--------------------|-------------|-----------------------------|-------------------------|-------------------------|----------------------|----------------------|----------------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Fenitrothion<br>(mg/kg) | Malathion<br>(mg/kg) | Parathion<br>(mg/kg) | Bromophos ethyl<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.2                    | <0.2                 | <0.2                 | <0.2                       |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.2                    | <0.2                 | <0.2                 | <0.2                       |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.2                    | <0.2                 | <0.2                 | <0.2                       |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.2                    | <0.2                 | <0.2                 | <0.2                       |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.2                    | <0.2                 | <0.2                 | <0.2                       |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                    | N.A.                 | N.A.                 | N.A.                       |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                    | N.A.                 | N.A.                 | N.A.                       |



|                                       | Organophosphate pesticides |                   |                     |                                   |  |  |  |
|---------------------------------------|----------------------------|-------------------|---------------------|-----------------------------------|--|--|--|
| Guideline                             | Methadathion<br>(mg/kg)    | Ethion<br>(mg/kg) | Azinphos<br>(mg/kg) | Total OP<br>Pesticides<br>(mg/kg) |  |  |  |
| ASC NEPM HIL A                        | N/A                        | N/A               | N/A                 | N/A                               |  |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                        | N/A               | N/A                 | N/A                               |  |  |  |
| Laboratory LOR                        | 0.5                        | 0.3               | 0.2                 | 1.7                               |  |  |  |

|                    |             |                             |                         |                         | Organophosp       | hate pesticides     |                                                                                                         |
|--------------------|-------------|-----------------------------|-------------------------|-------------------------|-------------------|---------------------|---------------------------------------------------------------------------------------------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Methidathion<br>(mg/kg) | Ethion<br>(mg/kg) | Azinphos<br>(mg/kg) | Total OP<br>Pesticides<br>(mg/kg)<br><1.7<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N.A.<br>N. |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | < 0.5                   | <0.2              | <0.2                | <1.7                                                                                                    |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.5                    | <0.2              | <0.2                | <1.7                                                                                                    |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.5                    | <0.2              | <0.2                | <1.7                                                                                                    |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.5                    | <0.2              | <0.2                | <1.7                                                                                                    |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.5                    | <0.2              | <0.2                | <1.7                                                                                                    |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                    | N.A.              | N.A.                | N.A.                                                                                                    |



|                                       | Pyrethroids           |                               |                                 |                       |  |  |  |
|---------------------------------------|-----------------------|-------------------------------|---------------------------------|-----------------------|--|--|--|
| Guideline                             | Bifenthrin<br>(mg/kg) | cis-<br>Permethrin<br>(mg/kg) | trans-<br>Permethrin<br>(mg/kg) | Cyfluthrin<br>(mg/kg) |  |  |  |
| ASC NEPM HIL A                        | 600                   | N/A                           | N/A                             | N/A                   |  |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                   | N/A                           | N/A                             | N/A                   |  |  |  |
| Laboratory LOR                        | 0.5                   | 0.5                           | 0.5                             | 1.0                   |  |  |  |

|                    |             |                             |                         |                       | Pyretl                        | nroids                          |                       |
|--------------------|-------------|-----------------------------|-------------------------|-----------------------|-------------------------------|---------------------------------|-----------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Bifenthrin<br>(mg/kg) | cis-<br>Permethrin<br>(mg/kg) | trans-<br>Permethrin<br>(mg/kg) | Cyfluthrin<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2 0.20–0.25 |                         | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <0.5                  | <0.5                          | <0.5                            | <1                    |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                  | N.A.                          | N.A.                            | N.A.                  |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                  | N.A.                          | N.A.                            | N.A.                  |



|                                       |                         | Pyrethroids              |                         | Carbamates            |                     |  |  |
|---------------------------------------|-------------------------|--------------------------|-------------------------|-----------------------|---------------------|--|--|
| Guideline                             | Cypermethrin<br>(mg/kg) | Esfenvalerate<br>(mg/kg) | Deltamethrin<br>(mg/kg) | Carbofuran<br>(mg/kg) | Carboryl<br>(mg/kg) |  |  |
| ASC NEPM HIL A                        | N/A                     | N/A                      | N/A                     | N/A                   | N/A                 |  |  |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                     | N/A                      | N/A                     | N/A                   | N/A                 |  |  |
| Laboratory LOR                        | 1.0                     | 0.5                      | 0.5                     | 0.5                   | 0.5                 |  |  |

|                    |             |                             |                         |                         | Pyrethroids              |                         | Carbarr               | ates                |
|--------------------|-------------|-----------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-----------------------|---------------------|
| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Cypermethrin<br>(mg/kg) | Esfenvalerate<br>(mg/kg) | Deltamethrin<br>(mg/kg) | Carbofuran<br>(mg/kg) | Carbaryl<br>(mg/kg) |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <1                      | <0.5                     | < 0.5                   | < 0.5                 | <0.5                |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.                     | N.A.                    | <0.5                  | <0.5                |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.                    | N.A.                     | N.A.                    | <0.5                  | <0.5                |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | <1                      | <0.5                     | <0.5                    | <0.5                  | <0.5                |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | <1                      | <0.5                     | < 0.5                   | < 0.5                 | <0.5                |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | <1                      | <0.5                     | < 0.5                   | <0.5                  | <0.5                |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | <1                      | <0.5                     | <0.5                    | <0.5                  | <0.5                |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | <1                      | <0.5                     | < 0.5                   | <0.5                  | <0.5                |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | <1                      | <0.5                     | <0.5                    | <0.5                  | <0.5                |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | <1                      | <0.5                     | <0.5                    | <0.5                  | <0.5                |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | <1                      | <0.5                     | <0.5                    | <0.5                  | <0.5                |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | <1                      | <0.5                     | <0.5                    | <0.5                  | <0.5                |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.                    | N.A.                     | N.A.                    | N.A.                  | N.A.                |



|                                       |                    | Ph               | Pyridine herbicides |                 |                     |                     |
|---------------------------------------|--------------------|------------------|---------------------|-----------------|---------------------|---------------------|
| Guideline                             | 2,4,5 T<br>(mg/kg) | 2,4 D<br>(mg/kg) | MCPA<br>(mg/kg)     | MCPB<br>(mg/kg) | Mecoprop<br>(mg/kg) | Picloram<br>(mg/kg) |
| ASC NEPM HIL A                        | 600                | 900              | 600                 | 600             | 600                 | 4500                |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                | N/A              | N/A                 | N/A             | N/A                 | N/A                 |
| Laboratory LOR                        | 0.01               | 0.01             | 0.01                | 0.01            | 0.01                | 0.01                |

| Sample             | Sample date | Comment                     | Sample<br>depth (m bgs) | Pheoxy herbicides  |                  |                 |                 |                     | Pyridine herbicides |  |
|--------------------|-------------|-----------------------------|-------------------------|--------------------|------------------|-----------------|-----------------|---------------------|---------------------|--|
|                    |             |                             |                         | 2,4,5 T<br>(mg/kg) | 2,4 D<br>(mg/kg) | MCPA<br>(mg/kg) | MCPB<br>(mg/kg) | Mecoprop<br>(mg/kg) | Picloram<br>(mg/kg) |  |
| Sample 1 0.1-0.25  | 27/06/2023  | Sample location 1           | 0.10-0.25               | <0.01              | < 0.01           | <0.01           | <0.01           | < 0.01              | <0.01               |  |
| QC1                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| QC2                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 1 0.3-0.4   | 27/06/2023  | Sample location 1           | 0.30-0.40               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| QC3                | 27/06/2023  | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 2 0.1-0.2   | 27/06/2023  | Sample location 2           | 0.10-0.20               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 2 0.2-0.25  | 27/06/2023  | Sample location 2           | 0.20-0.25               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 3 0.1-0.2   | 27/06/2023  | Sample location 3           | 0.10-0.20               | < 0.01             | < 0.01           | < 0.01          | <0.01           | < 0.01              | <0.01               |  |
| Sample 3 0.2-0.3   | 27/06/2023  | Sample location 3           | 0.20-0.30               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 4 0.1-0.15  | 27/06/2023  | Sample location 4           | 0.10-0.15               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 4 0.2-0.3   | 27/06/2023  | Sample location 4           | 0.20-0.30               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 5 0.1-0.4   | 27/06/2023  | Sample location 5           | 0.10-0.40               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 5 0.3-0.4   | 27/06/2023  | Sample location 5           | 0.30-0.40               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 6 0.1-0.2   | 27/06/2023  | Sample location 6           | 0.10-0.20               | < 0.01             | < 0.01           | < 0.01          | <0.01           | < 0.01              | < 0.01              |  |
| Sample 6 0.2-0.3   | 27/06/2023  | Sample location 6           | 0.20-0.30               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 7 0.1-0.2   | 27/06/2023  | Sample location 7           | 0.10-0.20               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 7 0.25-0.35 | 27/06/2023  | Sample location 7           | 0.25-0.35               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 8 0.1-0.2   | 27/06/2023  | Sample location 8           | 0.10-0.20               | < 0.01             | < 0.01           | < 0.01          | <0.01           | < 0.01              | <0.01               |  |
| Sample 8 0.3-0.4   | 27/06/2023  | Sample location 8           | 0.30-0.4                | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 9 0.1-0.2   | 27/06/2023  | Sample location 9           | 0.10-0.20               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 9 0.25-0.3  | 27/06/2023  | Sample location 9           | 0.25-0.30               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Sample 10 0.1-0.2  | 27/06/2023  | Sample location 10          | 0.10-0.20               | < 0.01             | < 0.01           | < 0.01          | < 0.01          | < 0.01              | <0.01               |  |
| Sample 10 0.3-0.35 | 27/06/2023  | Sample location 10          | 0.30-0.35               | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |
| Rinsate            | 27/06/2023  | Rinsate blank               | N/A                     | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                |  |

| Guideline                             | Triazine<br>herbicides<br>Atrazine<br>(mg/kg) | Notes                                                                |
|---------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|
| ASC NEPM HIL A                        | 320                                           | <sup>a</sup> Assumes all chromium present is in the hexavalent form. |
| ASC NEPM EIL<br>(aged in urban soils) | N/A                                           | <sup>b</sup> Assumes all mercury present in methyl mercury form.     |
| Laboratory LOR                        | 0.5                                           |                                                                      |

| Sample             | Sample date Comment |                             | Sample<br>depth (m bgs) | Triazine<br><u>herbicides</u><br>Atrazine<br>(mg/kg) |
|--------------------|---------------------|-----------------------------|-------------------------|------------------------------------------------------|
| Sample 1 0.1-0.25  | 27/06/2023          | Sample location 1           | 0.10-0.25               | <0.5                                                 |
| QC1                | 27/06/2023          | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | <0.5                                                 |
| QC2                | 27/06/2023          | Replicate Sample 1 0.1-0.25 | 0.10-0.25               | <0.5                                                 |
| Sample 1 0.3-0.4   | 27/06/2023          | Sample location 1           | 0.30-0.40               | N.A.                                                 |
| QC3                | 27/06/2023          | Replicate Sample 1 0.1-0.25 | 0.30-0.40               | N.A.                                                 |
| Sample 2 0.1-0.2   | 27/06/2023          | Sample location 2           | 0.10-0.20               | N.A.                                                 |
| Sample 2 0.2-0.25  | 27/06/2023          | Sample location 2           | 0.20-0.25               | <0.5                                                 |
| Sample 3 0.1-0.2   | 27/06/2023          | Sample location 3           | 0.10-0.20               | <0.5                                                 |
| Sample 3 0.2-0.3   | 27/06/2023          | Sample location 3           | 0.20-0.30               | N.A.                                                 |
| Sample 4 0.1-0.15  | 27/06/2023          | Sample location 4           | 0.10-0.15               | <0.5                                                 |
| Sample 4 0.2-0.3   | 27/06/2023          | Sample location 4           | 0.20-0.30               | N.A.                                                 |
| Sample 5 0.1-0.4   | 27/06/2023          | Sample location 5           | 0.10-0.40               | <0.5                                                 |
| Sample 5 0.3-0.4   | 27/06/2023          | Sample location 5           | 0.30-0.40               | N.A.                                                 |
| Sample 6 0.1-0.2   | 27/06/2023          | Sample location 6           | 0.10-0.20               | <0.5                                                 |
| Sample 6 0.2-0.3   | 27/06/2023          | Sample location 6           | 0.20-0.30               | N.A.                                                 |
| Sample 7 0.1-0.2   | 27/06/2023          | Sample location 7           | 0.10-0.20               | <0.5                                                 |
| Sample 7 0.25-0.35 | 27/06/2023          | Sample location 7           | 0.25-0.35               | N.A.                                                 |
| Sample 8 0.1-0.2   | 27/06/2023          | Sample location 8           | 0.10-0.20               | <0.5                                                 |
| Sample 8 0.3-0.4   | 27/06/2023          | Sample location 8           | 0.30-0.4                | N.A.                                                 |
| Sample 9 0.1-0.2   | 27/06/2023          | Sample location 9           | 0.10-0.20               | <0.5                                                 |
| Sample 9 0.25-0.3  | 27/06/2023          | Sample location 9           | 0.25-0.30               | N.A.                                                 |
| Sample 10 0.1-0.2  | 27/06/2023          | Sample location 10          | 0.10-0.20               | <0.5                                                 |
| Sample 10 0.3-0.35 | 27/06/2023          | Sample location 10          | 0.30-0.35               | N.A.                                                 |
| Rinsate            | 27/06/2023          | Rinsate blank               | N/A                     | N.A.                                                 |



RPD

|                     |             |                             |                     |                         | Eight metals       |                    |                     |
|---------------------|-------------|-----------------------------|---------------------|-------------------------|--------------------|--------------------|---------------------|
| Sample              | Sample date | Location                    | Comment             | Sample<br>depth (m bgs) | Arsenic<br>(mg/kg) | Cadmium<br>(mg/kg) | Chromium<br>(mg/kg) |
| Sample 1 0.1–0.25   | 27/06/2023  | Sample location 1           | A horizon           | 0.10–0.25               | 1                  | <0.3               | 3.7                 |
| QC1                 | 27/06/2023  | Replicate Sample 1 0.1-0.25 | A1 horizon          | 0.10-0.25               | 1                  | <0.3               | 5.2                 |
| QC2                 | 27/06/2023  | Replicate Sample 1 0.1-0.25 | Replicate Sample 1  | 0.10-0.25               | 1                  | < 0.3              | 4.1                 |
| Sample 1 0.3–0.4    | 27/06/2023  | Sample location 1           | C horizon           | 0.30-0.40               | <1                 | <0.3               | 5.2                 |
| QC3                 | 27/06/2023  | Replicate Sample 1 0.1-0.25 | Replicate Sample 11 | 0.30-0.40               | 3                  | < 0.3              | 11                  |
|                     | -           | <b>·</b> · · ·              | • · · · ·           | Laboratory LOR          | 1.0                | 0.3                | 0.5                 |
|                     |             |                             |                     | -                       |                    |                    |                     |
| Sample 1 0.1–0.25 8 |             | 0                           | N/A                 | -34                     |                    |                    |                     |
| Sample 1 0.1–0.25 8 |             | 0                           | N/A                 | 24                      |                    |                    |                     |
| Sample 1 0.3–0.4 &  |             | N/A                         | N/A                 | -72                     |                    |                    |                     |

Page 1 of 8 Lab. Report: SE249904 GroupOne MES2167-R02


|                   |                 | Eight metals      |                 |                    |                     | Organochlorine      | pesticides          |                     | 0                   | rganochlorine pestic | ides                       |
|-------------------|-----------------|-------------------|-----------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------------|
| Copper<br>(mg/kg) | Lead<br>(mg/kg) | Nickel<br>(mg/kg) | Zinc<br>(mg/kg) | Mercury<br>(mg/kg) | p,p'-DDD<br>(mg/kg) | o,p'-DDD<br>(mg/kg) | p,p'-DDE<br>(mg/kg) | o,p'-DDE<br>(mg/kg) | p,p'-DDT<br>(mg/kg) | o,p'-DDT<br>(mg/kg)  | DDT+DDE+<br>DDD<br>(mg/kg) |
| 4                 | 10              | 0.6               | 17              | <0.05              | <0.1                | <0.1                | <0.1                | <0.1                | <0.1                | <0.1                 | N.A.                       |
| 3.9               | 9               | 0.7               | 14              | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                 | N.A.                       |
| 4.2               | 10              | 0.7               | 17              | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                 | N.A.                       |
| 0.9               | 5               | 0.5               | 3               | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                 | N.A.                       |
| <0.5              | 12              | 1.5               | 6               | < 0.05             | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                | N.A.                 | N.A.                       |
| 0.5               | 1.0             | 0.5               | 2.0             | 0.05               | 0.1                 | 0.1                 | 0.1                 | 0.1                 | 0.1                 | 0.1                  | N/A                        |
|                   |                 |                   |                 |                    |                     |                     |                     |                     |                     |                      |                            |
| 3                 | 11              | -15               | 19              | N/A                | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A                  | N/A                        |
| -7                | -11             | 0                 | -19             | N/A                | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A                  | N/A                        |
| N/A               | -82             | -100              | -67             | N/A                | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A                  | N/A                        |

Page 2 of 8 Lab. Report: SE249904 GroupOne MES2167-R02



|                   |                     | Organochlorine                 | pesticides                      |                                 |                      |                                | Org                           | anochlorine pesti             | cides                         |                   |
|-------------------|---------------------|--------------------------------|---------------------------------|---------------------------------|----------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------|
| Aldrin<br>(mg/kg) | Dieldrin<br>(mg/kg) | Aldrin and dieldrin<br>(mg/kg) | Chlordane<br>(alpha)<br>(mg/kg) | Chlordane<br>(gamma)<br>(mg/kg) | Chlordane<br>(mg/kg) | Alpha<br>endosulfan<br>(mg/kg) | Beta<br>endosulfan<br>(mg/kg) | Endosulfan<br>sulfate (mg/kg) | Endosulfan (total)<br>(mg/kg) | Endrin<br>(mg/kg) |
| <0.1              | <0.2                | N.A.                           | <0.1                            | <0.1                            | N.A                  | <0.2                           | <0.2                          | <0.1                          | N.A.                          | <0.2              |
| N.A.              | N.A.                | N.A.                           | N.A.                            | N.A.                            | N.A                  | N.A.                           | N.A.                          | N.A.                          | N.A.                          | N.A.              |
| N.A.              | N.A.                | N.A.                           | N.A.                            | N.A.                            | N.A                  | N.A.                           | N.A.                          | N.A.                          | N.A.                          | N.A.              |
| N.A.              | N.A.                | N.A.                           | N.A.                            | N.A.                            | N.A                  | N.A.                           | N.A.                          | N.A.                          | N.A.                          | N.A.              |
| N.A.              | N.A.                | N.A.                           | N.A.                            | N.A.                            | N.A                  | N.A.                           | N.A.                          | N.A.                          | N.A.                          | N.A.              |
| 0.1               | 0.2                 | N/A                            | 0.1                             | 0.1                             | N/A                  | 0.2                            | 0.2                           | 0.1                           | N/A                           | 0.2               |
| N/A               | N/A                 | N/A                            | N/A                             | N/A                             | N/A                  | N/A                            | N/A                           | N/A                           | N/A                           | N/A               |
| N/A               | N/A                 | N/A                            | N/A                             | N/A                             | N/A                  | N/A                            | N/A                           | N/A                           | N/A                           | N/A               |
| N/A               | N/A                 | N/A                            | N/A                             | N/A                             | N/A                  | N/A                            | N/A                           | N/A                           | N/A                           | N/A               |

Page 3 of 8 Lab. Report: SE249904 GroupOne MES2167-R02



Table C2 - Soil sample relative percent differences 41 King Street DSI, Lot 3 DP1118635, Tarago

|                       | O                  | rganochlorine pest   | icides              |                      |
|-----------------------|--------------------|----------------------|---------------------|----------------------|
| Heptachlor<br>(mg/kg) | Lindane<br>(mg/kg) | Delta BHC<br>(mg/kg) | Beta BHC<br>(mg/kg) | Nonachlor<br>(mg/kg) |
| <0.1                  | <0.1               | <0.1                 | <0.1                | <0.1                 |
| N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| N.A.                  | N.A.               | N.A.                 | N.A.                | N.A.                 |
| 0.1                   | 0.1                | 0.1                  | 0.1                 | 0.1                  |
| N/A                   | N/A                | N/A                  | N/A                 | N/A                  |
| N/A                   | N/A                | N/A                  | N/A                 | N/A                  |
| N/A                   | N/A                | N/A                  | N/A                 | N/A                  |

Page 4 of 8 Lab. Report: SE249904 GroupOne MES2167-R02



Table C2 - Soil sample relative percent differences 41 King Street DSI, Lot 3 DP1118635, Tarago

|                    | Organochlo     | orine pesticides        |                  |                                          |
|--------------------|----------------|-------------------------|------------------|------------------------------------------|
| lsodrin<br>(mg/kg) | HCB<br>(mg/kg) | Methoxychlor<br>(mg/kg) | Mirex<br>(mg/kg) | Total OC<br>Pesticides<br>CLP<br>(mg/kg) |
| <0.1               | <0.1           | <0.1                    | <0.1             | <1.0                                     |
| N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                     |
| N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                     |
| N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                     |
| N.A.               | N.A.           | N.A.                    | N.A.             | <1.0                                     |
| 0.1                | 0.1            | 0.1                     | 0.1              | 1.0                                      |
| N/A                | N/A            | N/A                     | N/A              | N/A                                      |
| N/A                | N/A            | N/A                     | N/A              | N/A                                      |
| N/A                | N/A            | N/A                     | N/A              | N/A                                      |

Page 5 of 8 Lab. Report: SE249904 GroupOne MES2167-R02



|                         | Organophosph          | ate pesticides        |                     |                         | Organophospha        | te pesticides        |                               |
|-------------------------|-----------------------|-----------------------|---------------------|-------------------------|----------------------|----------------------|-------------------------------|
| Chlorpyrifos<br>(mg/kg) | Dichlorvos<br>(mg/kg) | Dimethoate<br>(mg/kg) | Diazinon<br>(mg/kg) | Fenitrothion<br>(mg/kg) | Malathion<br>(mg/kg) | Parathion<br>(mg/kg) | Bromophos<br>ethyl<br>(mg/kg) |
| <0.2                    | <0.5                  | <0.5                  | <0.5                | <0.2                    | <0.2                 | <0.2                 | <0.2                          |
| N.A.                    | N.A.                  | N.A.                  | N.A.                | N.A.                    | N.A.                 | N.A.                 | N.A.                          |
| N.A.                    | N.A.                  | N.A.                  | N.A.                | N.A.                    | N.A.                 | N.A.                 | N.A.                          |
| N.A.                    | N.A.                  | N.A.                  | N.A.                | N.A.                    | N.A.                 | N.A.                 | N.A.                          |
| N.A.                    | N.A.                  | N.A.                  | N.A.                | N.A.                    | N.A.                 | N.A.                 | N.A.                          |
| 0.2                     | 0.5                   | 0.5                   | 0.5                 | 0.2                     | 0.2                  | 0.2                  | 0.2                           |
| N/A                     | N/A                   | N/A                   | N/A                 | N/A                     | N/A                  | N/A                  | N/A                           |
| N/A                     | N/A                   | N/A                   | N/A                 | N/A                     | N/A                  | N/A                  | N/A                           |
| N/A                     | N/A                   | N/A                   | N/A                 | N/A                     | N/A                  | N/A                  | N/A                           |

Page 6 of 8 Lab. Report: SE249904 GroupOne MES2167-R02



Table C2 - Soil sample relative percent differences 41 King Street DSI, Lot 3 DP1118635, Tarago

|                             | Organophos        | ohate pesticides    |                                   |                       | Py                            | rethroids                   |                       |
|-----------------------------|-------------------|---------------------|-----------------------------------|-----------------------|-------------------------------|-----------------------------|-----------------------|
| Methidathi<br>on<br>(mg/kg) | Ethion<br>(mg/kg) | Azinphos<br>(mg/kg) | Total OP<br>Pesticides<br>(mg/kg) | Bifenthrin<br>(mg/kg) | cis-<br>Permethrin<br>(mg/kg) | trans-Permethrin<br>(mg/kg) | Cyfluthrin<br>(mg/kg) |
| <0.5                        | <0.2              | <0.2                | <1.7                              | <0.5                  | <0.5                          | <0.5                        | <1                    |
| N.A.                        | N.A.              | N.A.                | N.A.                              | N.A.                  | N.A.                          | N.A.                        | N.A.                  |
| N.A.                        | N.A.              | N.A.                | N.A.                              | N.A.                  | N.A.                          | N.A.                        | N.A.                  |
| N.A.                        | N.A.              | N.A.                | N.A.                              | N.A.                  | N.A.                          | N.A.                        | N.A.                  |
| N.A.                        | N.A.              | N.A.                | N.A.                              | N.A.                  | N.A.                          | N.A.                        | N.A.                  |
| 0.5                         | 0.3               | 0.2                 | 1.7                               | 0.5                   | 0.5                           | 0.5                         | 1.0                   |
| N/A                         | N/A               | N/A                 | N/A                               | N/A                   | N/A                           | N/A                         | N/A                   |
| N/A                         | N/A               | N/A                 | N/A                               | N/A                   | N/A                           | N/A                         | N/A                   |
| N/A                         | N/A               | N/A                 | N/A                               | N/A                   | N/A                           | N/A                         | N/A                   |

Page 7 of 8 Lab. Report: SE249904 GroupOne MES2167-R02



| I                       | Pyrethroids              |                             | Carbai                | mates               |                    | Ρ                | heoxy herbi     | cides           |                     | Pyridine<br>herbicides | Triazine<br>herbicides |
|-------------------------|--------------------------|-----------------------------|-----------------------|---------------------|--------------------|------------------|-----------------|-----------------|---------------------|------------------------|------------------------|
| Cypermethrin<br>(mg/kg) | Esfenvalerate<br>(mg/kg) | Deltameth<br>rin<br>(mg/kg) | Carbofuran<br>(mg/kg) | Carbaryl<br>(mg/kg) | 2,4,5 T<br>(mg/kg) | 2,4 D<br>(mg/kg) | MCPA<br>(mg/kg) | MCPB<br>(mg/kg) | Mecoprop<br>(mg/kg) | Picloram<br>(mg/kg)    | Atrazine<br>(mg/kg)    |
| <1                      | <0.5                     | <0.5                        | <0.5                  | <0.5                | <0.01              | <0.01            | <0.01           | <0.01           | <0.01               | <0.01                  | <0.5                   |
| N.A.                    | N.A.                     | N.A.                        | <0.5                  | <0.5                | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                   | <0.5                   |
| N.A.                    | N.A.                     | N.A.                        | <0.5                  | <0.5                | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                   | <0.5                   |
| N.A.                    | N.A.                     | N.A.                        | N.A.                  | N.A.                | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                   | N.A.                   |
| N.A.                    | N.A.                     | N.A.                        | N.A.                  | N.A.                | N.A.               | N.A.             | N.A.            | N.A.            | N.A.                | N.A.                   | N.A.                   |
| 1.0                     | 0.5                      | 0.5                         | 0.5                   | 0.5                 | 0.01               | 0.01             | 0.01            | 0.01            | 0.01                | 0.01                   | 0.5                    |
| N/A                     | N/A                      | N/A                         | N/A                   | N/A                 | N/A                | N/A              | N/A             | N/A             | N/A                 | N/A                    | N/A                    |
| N/A                     | N/A                      | N/A                         | N/A                   | N/A                 | N/A                | N/A              | N/A             | N/A             | N/A                 | N/A                    | N/A                    |
| N/A                     | N/A                      | N/A                         | N/A                   | N/A                 | N/A                | N/A              | N/A             | N/A             | N/A                 | N/A                    | N/A                    |

Page 8 of 8 Lab. Report: SE249904 GroupOne MES2167-R02



Appendix D. Field core logs

02 6161 1762

contact@murrang.com.au

WWW.MUTTANG.COM.AU ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page G1



DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A DRILLING METHOD Hand auger TOTAL DEPTH 0.4 m

DIAMETER 0.15 m

Auger sample Sample 1

COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

COMPLETION Filled in

CASING N/A COMMENTSN/A Near the corner of the main shed

| · · · · · · · ·                    | Samples            | Is Analysed? | Water | Graphic Log | Material Description                                                                     | Moisture | Additional<br>Observations                       |
|------------------------------------|--------------------|--------------|-------|-------------|------------------------------------------------------------------------------------------|----------|--------------------------------------------------|
| 0.05                               |                    |              |       |             | Sandy CLAY: Grey-brown sandy<br>CLAY. Fine, well-graded sands, no<br>discernible colour. | М        | Plant roots<br>and<br>rootlets.                  |
| • 0.05<br>• 0.1<br>• 0.15<br>• 0.2 | Sample 1<br>0.10.2 | Y            |       |             |                                                                                          |          |                                                  |
|                                    |                    |              |       |             | Sandy CLAY: Light grey-brown<br>CLAY; Some fine gravels,                                 | M        | Plant roots<br>and                               |
| - 0.3<br>- 0.3                     | Sample 1<br>0.30.4 | Y            |       |             | subrounded, white and brown.                                                             |          | rootlets.<br>Very<br>sandy,<br>almost a<br>sand. |
| 0.4                                |                    |              |       |             | Termination Depth at:0.4 m                                                               |          |                                                  |
| - 0.45                             |                    |              |       |             |                                                                                          |          |                                                  |
| 0.5                                |                    |              |       |             |                                                                                          |          |                                                  |
| 0.55                               |                    |              |       |             |                                                                                          |          |                                                  |
| • 0.6<br>• 0.6                     |                    |              |       |             |                                                                                          |          |                                                  |
| 0.7                                |                    |              |       |             |                                                                                          |          |                                                  |
| 0.75                               |                    |              |       |             |                                                                                          |          |                                                  |
| - 0.65<br>- 0.7<br>- 0.75<br>- 0.8 |                    |              |       |             |                                                                                          |          |                                                  |
| - 0.85                             |                    |              |       |             |                                                                                          |          |                                                  |
| 0.9                                |                    |              |       |             |                                                                                          |          |                                                  |
| - 0.95                             |                    |              |       |             |                                                                                          |          |                                                  |
|                                    |                    |              |       |             |                                                                                          | 1        |                                                  |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



Auger sample Sample 2

DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A DRILLING METHOD Hand auger TOTAL DEPTH 0.25 m DIAMETER 0.15 m

COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

COMPLETION Filled in CASING N/A
COMMENTSN/A Near the corner of the main shed

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Samples               | ls Analysed? | Water | Graphic Log | Material Description              | Moisture | Additional<br>Observations      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|-------|-------------|-----------------------------------|----------|---------------------------------|
| A.1     Sample 2     Y       0.1-0.2     Silty CLAY: Red-brown silty CLAY.     M       D.2     Sample 2     Y       0.2     Sample 2     Y       0.2     Sample 2     Y       0.2     Termination Depth at:0.25 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )5                    |              |       |             |                                   | М        | Plant roots<br>and<br>rootlets, |
| Sample 2         Y           0.2-0.25         Y           Termination Depth at:0.25 m           0.3           0.3           0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample 2 1<br>0.10.2  |              |       |             | Silty CLAY: Red-brown silty CLAY. | м        | and<br>rootlets,                |
| 1.3         .3           0.4         .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample 2 Y<br>0.20.25 | Y            |       |             |                                   |          |                                 |
| 0.0       Sity CLAY: Brown sity CLAY.       M       Plant roots and rootlets, moist.         1       Sample 2       Y       Y       Sity CLAY: Red-brown sity CLAY.       M       Plant roots and rootlets, moist.         1.1       Sample 2       Y       Y       Sity CLAY: Red-brown sity CLAY.       M       Plant roots and rootlets, moist.         1.2       Sample 2       Y       Y       Sity CLAY: Red-brown sity CLAY.       M       Plant roots and rootlets, moist.         1.3       Sample 2       Y       Y       Sity CLAY: Red-brown sity CLAY.       M       Plant roots and rootlets, moist.         1.3       Sample 2       Y       Y       Fermination Depth at:0.25 m       I       I         1.3       I       I       I       I       I       I       I       I         1.4       I       I       I       I       I       I       I       I       I         1.4       I       I       I       I       I       I       I       I       I       I         1.4       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I< |                       |              |       |             |                                   |          |                                 |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A DRILLING METHOD Hand auger

Auger sample Sample 3

DRILLING METHOD Hand auger TOTAL DEPTH 0.3 m DIAMETER 0.15 m COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

 COMPLETION
 Filled in
 CASING
 N/A

 COMMENTSN/A
 Near the corner of the main shed
 V/A

| Depth (m)       | Samples            | ls Analysed? | Water | Graphic Log | Material Description                                                                               | Moisture | Additional<br>Observations                |
|-----------------|--------------------|--------------|-------|-------------|----------------------------------------------------------------------------------------------------|----------|-------------------------------------------|
| - 0.05          |                    |              |       |             | Silty CLAY: Brown silty CLAY.                                                                      | М        | Plant roots<br>and<br>rootlets,<br>moist. |
| - 0.1           | Sample 3<br>0.10.2 | Y            |       |             | Sandy CLAY: Sandy CLAY:                                                                            | M        | Plant roots                               |
| 0.2             | Sample 3 0.20.3    | Y            |       |             | Light-brown sandy CLAY. Some fine<br>to coarse, sub-angular to<br>sub-rounded, grey-brown gravels. |          | and<br>rootlets,<br>moist.                |
| 0.2             | 0.2 0.0            |              |       |             | Termination Depth at:0.3 m                                                                         |          |                                           |
| - 0.3           |                    |              |       |             |                                                                                                    |          |                                           |
| - 0.4           |                    |              |       |             |                                                                                                    |          |                                           |
| - 0.45          |                    |              |       |             |                                                                                                    |          |                                           |
| - 0.5           |                    |              |       |             |                                                                                                    |          |                                           |
| 0.6             |                    |              |       |             |                                                                                                    |          |                                           |
| 0.65            |                    |              |       |             |                                                                                                    |          |                                           |
| - 0.75          |                    |              |       |             |                                                                                                    |          |                                           |
| - 0.8           |                    |              |       |             |                                                                                                    |          |                                           |
| - 0.85<br>- 0.9 |                    |              |       |             |                                                                                                    |          |                                           |
| - 0.95          |                    |              |       |             |                                                                                                    |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith

Auger sample Sample 4

DRILL RIG N/A DRILLING METHOD Hand auger TOTAL DEPTH 0.3 m DIAMETER 0.15 m COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

COMPLETION Filled in CASING N/A
COMMENTSN/A Near the corner of the main shed

| Depth (m)      | Samples             | Is Analysed? | Water | Graphic Log | Material Description                                                                               | Moisture | Additional<br>Observations                |
|----------------|---------------------|--------------|-------|-------------|----------------------------------------------------------------------------------------------------|----------|-------------------------------------------|
| - 0.05         |                     |              |       |             | Silty CLAY: Brown silty CLAY.                                                                      | м        | Plant roots<br>and<br>rootlets,<br>moist. |
| - 0.1          | Sample 4<br>0.10.15 | Y            |       |             | Sandy CLAY: Sandy CLAY:                                                                            | M        | Plant roots                               |
| - 0.2          | Sample 4<br>0.20.3  | Y            |       |             | Light-brown sandy CLAY. Some fine<br>to coarse, sub-angular to<br>sub-rounded, grey-brown gravels. |          | and<br>rootlets,<br>moist.                |
|                |                     |              |       |             | Termination Depth at:0.3 m                                                                         |          |                                           |
| - 0.35         |                     |              |       |             |                                                                                                    |          |                                           |
| - 0.4          |                     |              |       |             |                                                                                                    |          |                                           |
| - 0.5          |                     |              |       |             |                                                                                                    |          |                                           |
| 0.5            |                     |              |       |             |                                                                                                    |          |                                           |
| - 0.65         |                     |              |       |             |                                                                                                    |          |                                           |
| - 0.7          |                     |              |       |             |                                                                                                    |          |                                           |
| - 0.75         |                     |              |       |             |                                                                                                    |          |                                           |
| - 0.85         |                     |              |       |             |                                                                                                    |          |                                           |
| - 0.9<br>- 0.9 |                     |              |       |             |                                                                                                    |          |                                           |
| _              |                     |              |       |             |                                                                                                    |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A

Auger sample Sample 5

DRILLING METHOD Hand auger TOTAL DEPTH 0.4 m DIAMETER 0.15 m COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

COMPLETION Filled in CASING N/A
COMMENTSN/A Near the corner of the main shed

| Depth (m) | Samples            | ls Analysed? | Water | Graphic Log | Material Description                                                                   | Moisture | Additional<br>Observations                |
|-----------|--------------------|--------------|-------|-------------|----------------------------------------------------------------------------------------|----------|-------------------------------------------|
| - 0.05    |                    |              |       |             | Sandy CLAY: Dark-brown CLAY;<br>Medium, highly graded sands,<br>(assumed to be) clear; | м        | Plant roots<br>and<br>rootlets,<br>moist. |
| - 0.15    | Sample 5<br>0.10.2 | Y            |       |             |                                                                                        | м        | Plant roots and                           |
| 0.2       |                    |              |       |             |                                                                                        |          | rootlets,<br>moist.                       |
| 0.3       | Sample 5<br>0.30.4 | Y            |       |             | Sandy CLAY: Grey-brown sandy CLAY; fine highly graded sands.                           |          |                                           |
| 0.4       |                    |              |       | 931/1       | Termination Depth at:0.4 m                                                             |          |                                           |
| - 0.45    |                    |              |       |             |                                                                                        |          |                                           |
| - 0.5     |                    |              |       |             |                                                                                        |          |                                           |
| 0.6       |                    |              |       |             |                                                                                        |          |                                           |
| - 0.7     |                    |              |       |             |                                                                                        |          |                                           |
| - 0.75    |                    |              |       |             |                                                                                        |          |                                           |
| - 0.85    |                    |              |       |             |                                                                                        |          |                                           |
| 0.9       |                    |              |       |             |                                                                                        |          |                                           |
|           |                    |              |       |             |                                                                                        |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A

Auger sample Sample 6

DRILLING METHOD Hand auger TOTAL DEPTH 0.3 m DIAMETER 0.15 m COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

COMPLETION Filled in CASING N/A
COMMENTSN/A Near the corner of the main shed

| Depth (m)<br>Samples                                                                                                                    | Is Analysed? | Water | Graphic Log | Material Description                                                                                         | Moisture | Additional<br>Observations                |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|-------------|--------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|
| 0.05                                                                                                                                    |              |       |             | Silty CLAY: Brown silty CLAY; some<br>fine to coarse sub-angular gravels,<br>white, brown, grey (colluvium). | М        | Plant roots<br>and<br>rootlets,<br>moist. |
| 0.05<br>0.1 Sample 6<br>0.10.2<br>0.15<br>0.2 Sample 6<br>0.20.3<br>0.25                                                                | Y            |       |             |                                                                                                              |          |                                           |
|                                                                                                                                         | Y            |       |             | Silty CLAY: Red-brown silty CLAY;<br>trace sub-rounded white gravels.                                        | м        | Plant roots<br>and<br>rootlets,<br>moist. |
| 0.3         0.4         0.4         0.5         0.5         0.6         0.6         0.7         0.7         0.8         0.8         0.9 |              |       |             |                                                                                                              |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



Auger sample Sample 7

DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A DRILLING METHOD Hand auger TOTAL DEPTH 0.35 m DIAMETER 0.15 m

COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

COMPLETION Filled in CASING N/A
COMMENTSN/A Near the corner of the main shed

| Depth (m)              | Samples              | ls Analysed? | Water    | Graphic Log | Material Description                | Moisture | Additional<br>Observations                |
|------------------------|----------------------|--------------|----------|-------------|-------------------------------------|----------|-------------------------------------------|
| 0.05                   |                      |              |          |             | Silty CLAY: Brown silty CLAY.       | M        | Plant roots<br>and<br>rootlets,<br>moist. |
| 0.15                   | Sample 7<br>0.10.2   | Y            |          |             | Silty CLAY: Brown silty CLAY;       | w        |                                           |
|                        |                      |              |          |             | subrounded, fine to coarse gravels. | vv       |                                           |
| <del>0.2(</del><br>0.3 | Sample 7<br>0.250.35 | Y            | <u>▼</u> |             | Termination Depth at:0.35 m         |          | Plant roots<br>and<br>rootlets,<br>moist. |
| 0.38<br>0.4<br>0.48    |                      |              |          |             |                                     |          |                                           |
| 0.5                    |                      |              |          |             |                                     |          |                                           |
| 0.65<br>0.7            |                      |              |          |             |                                     |          |                                           |
| 0.75<br>0.8            |                      |              |          |             |                                     |          |                                           |
| 0.85                   |                      |              |          |             |                                     |          |                                           |
| - 0.9<br>- 0.9         |                      |              |          |             |                                     |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A DRILLING METHOD Hand auger

TOTAL DEPTH 0.4 m

DIAMETER 0.15 m

Auger sample Sample 8

COORD SYS SURFACE ELEVATIN N/A

WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

COORDINATES

SCREEN N/A

COMPLETION Filled in CASING N/A COMMENTSN/A Near the corner of the main shed

| Depth (m)                                                                | Samples  | Is Analysed? | Water | Graphic Log | Material Description                                                                                                           | Moisture | Additional<br>Observations                |
|--------------------------------------------------------------------------|----------|--------------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|
| - 0.05                                                                   |          |              |       |             | Clayey SAND: well-graded, medium,<br>rounded SANDS; brown clay.                                                                | м        | Plant roots<br>and<br>rootlets,<br>moist. |
| - 0.05<br>- 0.1 Samp<br>0.1-0<br>- 0.15<br>- 0.2<br>- 0.25<br>- 0.3 Samp | e 8<br>2 | Y            |       |             |                                                                                                                                |          |                                           |
| - 0.2                                                                    |          |              |       |             |                                                                                                                                |          |                                           |
| - 0.35                                                                   |          | Y            |       |             | Clayey SAND: well-graded, medium,<br>rounded SANDS; brown clay; some<br>subangular to subrounded gravels<br>(possibly granite) |          |                                           |
| - 0.4<br>- 0.4<br>- 0.5                                                  |          |              |       |             | Termination Depth at:0.4 m                                                                                                     |          |                                           |
| - 0.5<br>- 0.5ŧ                                                          |          |              |       |             |                                                                                                                                |          |                                           |
| - 0.55<br>- 0.6<br>- 0.65<br>- 0.7<br>- 0.75<br>- 0.8                    |          |              |       |             |                                                                                                                                |          |                                           |
| - 0.7<br>- 0.75                                                          |          |              |       |             |                                                                                                                                |          |                                           |
| - 0.8<br>- 0.85                                                          |          |              |       |             |                                                                                                                                |          |                                           |
| - 0.88<br>- 0.9<br>- 0.98                                                |          |              |       |             |                                                                                                                                |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



Auger sample Sample 9

DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A DRILLING METHOD Hand auger TOTAL DEPTH 0.3 m DIAMETER 0.15 m

COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

COMPLETION Filled in CASING N/A
COMMENTSN/A Near the corner of the main shed

| Depth (m)        | Samples             | Is Analysed? | Water | Graphic Log | Material Description                                   | Moisture | Additional<br>Observations                |
|------------------|---------------------|--------------|-------|-------------|--------------------------------------------------------|----------|-------------------------------------------|
| - 0.05           |                     |              |       |             | Sandy CLAY: brown CLAY; fine,<br>rounded, clear sands. | M        | Plant roots<br>and<br>rootlets,<br>moist. |
| - 0.1            | Sample 9<br>0.10.2  | Y            |       |             |                                                        |          |                                           |
|                  |                     |              |       |             |                                                        |          | Plant roots                               |
| - 0.25           | Sample 9<br>0.250.3 | Y            |       |             | Silty CLAY: red-brown CLAY.                            | М        | and<br>rootlets,<br>moist.                |
| - <del>0.3</del> |                     |              |       |             | Termination Depth at:0.3 m                             |          |                                           |
| - 0.35           |                     |              |       |             |                                                        |          |                                           |
|                  |                     |              |       |             |                                                        |          |                                           |
| - 0.4            |                     |              |       |             |                                                        |          |                                           |
| - 0.45           |                     |              |       |             |                                                        |          |                                           |
| - 0.5            |                     |              |       |             |                                                        |          |                                           |
| - 0.55           |                     |              |       |             |                                                        |          |                                           |
| - 0.6            |                     |              |       |             |                                                        |          |                                           |
| - 0.65           |                     |              |       |             |                                                        |          |                                           |
| - 0.7            |                     |              |       |             |                                                        |          |                                           |
| - 0.75           |                     |              |       |             |                                                        |          |                                           |
| 0.8              |                     |              |       |             |                                                        |          |                                           |
| - 0.85           |                     |              |       |             |                                                        |          |                                           |
| - 0.9            |                     |              |       |             |                                                        |          |                                           |
| - 0.95           |                     |              |       |             |                                                        |          |                                           |
|                  |                     |              |       |             |                                                        |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



DRILLING COMPANY N/A Hand auger DRILLER Julia Jasonsmith DRILL RIG N/A DRILLING METHOD Hand auger TOTAL DEPTH 0.35 m

Auger sample Sample 10

COORDINATES COORD SYS SURFACE ELEVATIN N/A WELL TOC N/A LOGGED BY JJ CHECKED BY N/A

SCREEN N/A

CASING N/A

DIAMETER 0.15 m

COMPLETION Filled in CAS COMMENTSN/A Near the corner of the main shed

| Depth (m)<br>Samples                                                              | Is Analysed? | Water | Graphic Log | Material Description               | Moisture | Additional<br>Observations                |
|-----------------------------------------------------------------------------------|--------------|-------|-------------|------------------------------------|----------|-------------------------------------------|
| 0.05<br>0.1 Sample 10<br>0.10.2                                                   | Y            |       |             | Silty CLAY: brown silty CLAY.      | М        | Plant roots<br>and<br>rootlets,<br>moist. |
| 0.2<br>0.2<br>Sample 10<br>0.3-0.35                                               | Y            |       |             | Silty CLAY: light-brown silty CLAY | W        | Plant roots<br>and<br>rootlets,<br>moist. |
| 0.34<br>0.4<br>0.5<br>0.5<br>0.6<br>0.6<br>0.7<br>0.7<br>0.7<br>0.8<br>0.8<br>0.8 |              |       |             | Termination Depth at:0.35 m        |          |                                           |

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Page 1 of 1



Appendix E. Laboratory quality assurance and quality control

02 6161 1762

contact@murrang.com.au

WWW.MUTTANG.COM.AU ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page G1



# STATEMENT OF QA/QC PERFORMANCE

| CLIENT DETAILS               |                                                                                         | LABORATORY DETAI                 | LS                                                                                             |
|------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|
| Contact<br>Client<br>Address | Julia Jasonsmith<br>MURRANG EARTH SCIENCES PTY LTD<br>GPO BOX 2310<br>CANBERRA ACT 2601 | Manager<br>Laboratory<br>Address | Huong Crawford<br>SGS Alexandria Environmental<br>Unit 16, 33 Maddox St<br>Alexandria NSW 2015 |
| Telephone                    | 0406 621 214                                                                            | Telephone                        | +61 2 8594 0400                                                                                |
| Facsimile                    | (Not specified)                                                                         | Facsimile                        | +61 2 8594 0499                                                                                |
| Email                        | julia.jasonsmith@murrang.com.au                                                         | Email                            | au.environmental.sydney@sgs.com                                                                |
| Project                      | <b>MES2167</b>                                                                          | SGS Reference                    | <b>SE249904 R0</b>                                                                             |
| Order Number                 | <b>MES2167</b>                                                                          | Date Received                    | 28 Jun 2023                                                                                    |
| Samples                      | 24                                                                                      | Date Reported                    | 06 Jul 2023                                                                                    |

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

METHOD BLANK

Carbamates in Soil

1 item

| Sample counts by matrix                | 23 Soil, 1 Water | Type of documentation received  | COC      |  |
|----------------------------------------|------------------|---------------------------------|----------|--|
| Date documentation received            | 28/6/2023        | Samples received in good order  | Yes      |  |
| Samples received without headspace     | Yes              | Sample temperature upon receipt | 11.4°C   |  |
| Sample container provider              | SGS              | Turnaround time requested       | Standard |  |
| Samples received in correct containers | Yes              | Sufficient sample for analysis  | Yes      |  |
| Sample cooling method                  | lce              | Samples clearly labelled        | Yes      |  |
| Complete documentation received        | Yes              |                                 |          |  |

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia Australia

www.sgs.com.au f +61 2 8594 0499



25 Jul 2023

04 Jul 2023

03 Jul 2023

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

### Carbamates in Soil

| Carbamates in Soil           |              |          |             |             |                |             | Method: I             | ME-(AU)-[ENV]AN420 |
|------------------------------|--------------|----------|-------------|-------------|----------------|-------------|-----------------------|--------------------|
| Sample Name                  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due          | Analysed           |
| Sample 1 0.1-0.25            | SE249904.001 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 2 0.1-0.25            | SE249904.003 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 3 0.1-0.2             | SE249904.005 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 4 0.1-0.15            | SE249904.007 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 5 0.1-0.4             | SE249904.009 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| QC1                          | SE249904.011 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| QC2                          | SE249904.012 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 6 0.1-0.2             | SE249904.014 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 7 0.1-0.2             | SE249904.016 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 8 0.1-0.2             | SE249904.018 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 9 0.1-0.2             | SE249904.020 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Sample 10 0.1-0.2            | SE249904.022 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023           | 05 Jul 2023        |
| Mercury (dissolved) in Water |              |          |             |             |                |             | Method: ME-(AU)-[ENV] | AN311(Perth)/AN312 |
| Sample Name                  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due          | Analysed           |

28 Jun 2023

25 Jul 2023

Rinsate

SE249904.013

SE249904.015

SE249904.016

LB284095

LB284095

27 Jun 2023

27 Jun 2023

LB284151

27 Jun 2023

| ury in Soil     |              |          |             |             |                |             | Method: I    | VE-(AU)-[ENV]A  |
|-----------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-----------------|
| nple Name       | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed        |
| ple 1 0.1-0.25  | SE249904.001 | LB284032 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 04 Jul 2023     |
| ple 1 0.3-0.4   | SE249904.002 | LB284032 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 04 Jul 2023     |
| ple 2 0.1-0.25  | SE249904.003 | LB284032 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 04 Jul 2023     |
| ple 2 0.1-0.2   | SE249904.004 | LB284032 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 04 Jul 2023     |
| ple 3 0.1-0.2   | SE249904.005 | LB284032 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 04 Jul 2023     |
| ple 3 0.2-0.3   | SE249904.006 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 4 0.1-0.15  | SE249904.007 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 4 0.2-0.3   | SE249904.008 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 5 0.1-0.4   | SE249904.009 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 5 0.3-0.4   | SE249904.010 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
|                 | SE249904.011 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| 2               | SE249904.012 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 6 0.1-0.2   | SE249904.014 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 6 0.2-0.3   | SE249904.015 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 7 0.1-0.2   | SE249904.016 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 7 0.25-0.35 | SE249904.017 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| nple 8 0.1-0.2  | SE249904.018 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| nple 8 0.3-0.4  | SE249904.019 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 9 0.1-0.2   | SE249904.020 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 9 0.25-0.3  | SE249904.021 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 10 0.1-0.2  | SE249904.022 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ple 10 0.3-0.35 | SE249904.023 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| 3               | SE249904.024 | LB284033 | 27 Jun 2023 | 28 Jun 2023 | 25 Jul 2023    | 29 Jun 2023 | 25 Jul 2023  | 05 Jul 2023     |
| ture Content    |              |          |             |             |                |             | Method: I    | VIE-(AU)-[ENV]A |
| nple Name       | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed        |
| ple 1 0.1-0.25  | SE249904.001 | LB284094 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ple 1 0.3-0.4   | SE249904.002 | LB284094 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ple 2 0.1-0.25  | SE249904.003 | LB284094 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ple 2 0.1-0.2   | SE249904.004 | LB284094 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ple 3 0.1-0.2   | SE249904.005 | LB284094 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ple 3 0.2-0.3   | SE249904.006 | LB284095 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ple 4 0.1-0.15  | SE249904.007 | LB284095 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ple 4 0.2-0.3   | SE249904.008 | LB284095 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| nple 5 0.1-0.4  | SE249904.009 | LB284095 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| nple 5 0.3-0.4  | SE249904.010 | LB284095 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| ·<br>           | SE249904.011 | LB284095 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
| 2               | SE249904.012 | LB284095 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 30 Jun 2023 | 05 Jul 2023  | 04 Jul 2023     |
|                 |              |          |             |             |                |             |              |                 |

28 Jun 2023

28 Jun 2023

11 Jul 2023

11 Jul 2023

30 Jun 2023

30 Jun 2023

05 Jul 2023

05 Jul 2023

Sample 6 0.2-0.3

Sample 7 0.1-0.2

04 Jul 2023

04 Jul 2023



Method: ME-(AU)-[ENV]AN002

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

### Moisture Content (continued)

| Moisture Content (continued  | <b>D)</b>                    |                      |                            |                            |                            |                            | Method:                    | ME-(AU)-[ENV]ANUU2         |
|------------------------------|------------------------------|----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Sample Name                  | Sample No.                   | QC Ref               | Sampled                    | Received                   | Extraction Due             | Extracted                  | Analysis Due               | Analysed                   |
| Sample 7 0.25-0.35           | SE249904.017                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| Sample 8 0.1-0.2             | SE249904.018                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| Sample 8 0.3-0.4             | SE249904.019                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| Sample 9 0.1-0.2             | SE249904.020                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| Sample 9 0.25-0.3            | SE249904.021                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| Sample 10 0.1-0.2            | SE249904.022                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| Sample 10 0.3-0.35           | SE249904.023                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| QC3                          | SE249904.024                 | LB284095             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 30 Jun 2023                | 05 Jul 2023                | 04 Jul 2023                |
| OC Pesticides in Soil        |                              |                      |                            |                            |                            |                            | Method:                    | ME-(AU)-[ENV]AN420         |
| Sample Name                  | Sample No.                   | QC Ref               | Sampled                    | Received                   | Extraction Due             | Extracted                  | Analysis Due               | Analysed                   |
| Sample 1 0.1-0.25            | SE249904.001                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 04 Jul 2023                |
| Sample 3 0.1-0.2             | SE249904.005                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 04 Jul 2023                |
| Sample 6 0.1-0.2             | SE249904.014                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 04 Jul 2023                |
| Sample 8 0.1-0.2             | SE249904.018                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 04 Jul 2023                |
| Sample 10 0.1-0.2            | SE249904.022                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 04 Jul 2023                |
| OP Pesticides in Soil        |                              |                      |                            |                            |                            |                            | Method:                    | ME-(AU)-[ENV]AN420         |
| Sample Name                  | Sample No.                   | QC Ref               | Sampled                    | Received                   | Extraction Due             | Extracted                  | Analysis Due               | Analysed                   |
| Sample 1 0.1-0.25            | SE249904.001                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 3 0.1-0.2             | SE249904.005                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 6 0.1-0.2             | SE249904.014                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 8 0.1-0.2             | SE249904.018                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 10 0.1-0.2            | SE249904.022                 | LB284019             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Synthetic Pyrethroids in Soi |                              |                      |                            |                            |                            |                            |                            | ME-(AU)-[ENV]AN420         |
| Sample Name                  |                              | QC Ref               | Somplad                    | Received                   | Extraction Due             | Extracted                  | Analysis Due               | Analysed                   |
| Sample 1 0.1-0.25            | Sample No.<br>SE249904.001   | LB284020             | Sampled<br>27 Jun 2023     | 28 Jun 2023                |                            |                            |                            | -                          |
| Sample 2 0.1-0.25            | SE249904.001                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023<br>11 Jul 2023 | 29 Jun 2023<br>29 Jun 2023 | 08 Aug 2023<br>08 Aug 2023 | 05 Jul 2023<br>05 Jul 2023 |
| Sample 3 0.1-0.2             | SE249904.005                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 3 0.1-0.2             | SE249904.007                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 5 0.1-0.4             | SE249904.009                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| QC1                          | SE249904.011                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| QC2                          | SE249904.012                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 6 0.1-0.2             | SE249904.014                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 7 0.1-0.2             | SE249904.016                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 8 0.1-0.2             | SE249904.018                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 9 0.1-0.2             | SE249904.020                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Sample 10 0.1-0.2            | SE249904.022                 | LB284020             | 27 Jun 2023                | 28 Jun 2023                | 11 Jul 2023                | 29 Jun 2023                | 08 Aug 2023                | 05 Jul 2023                |
| Total Recoverable Elements   |                              |                      |                            |                            |                            |                            |                            | )-[ENV]AN040/AN320         |
| Sample Name                  | Sample No.                   | QC Ref               | Sampled                    | Received                   | Extraction Due             | Extracted                  | Analysis Due               | Analysed                   |
| Sample 1 0.1-0.25            | SE249904.001                 | LB284026             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 1 0.3-0.4             | SE249904.002                 | LB284026             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 2 0.1-0.25            | SE249904.003                 | LB284026             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 2 0.1-0.2             | SE249904.004                 | LB284026             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 3 0.1-0.2             | SE249904.005                 | LB284026             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 3 0.2-0.3             | SE249904.006                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 4 0.1-0.15            | SE249904.007                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 4 0.2-0.3             | SE249904.008                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 5 0.1-0.4             | SE249904.009                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 5 0.3-0.4             | SE249904.010                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| QC1                          | SE249904.011                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| QC2                          | SE249904.012                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 6 0.1-0.2             | SE249904.014                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 6 0.2-0.3             | SE249904.015                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 7 0.1-0.2             | SE249904.016                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 7 0.25-0.35           | SE249904.017                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| Sample 8 0.1-0.2             | SE249904.018                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
|                              |                              |                      |                            |                            |                            |                            |                            |                            |
| Sample 8 0.3-0.4             | SE249904.019                 | LB284027             | 27 Jun 2023                | 28 Jun 2023                | 24 Dec 2023                | 29 Jun 2023                | 24 Dec 2023                | 04 Jul 2023                |
| · · ·                        | SE249904.019<br>SE249904.020 | LB284027<br>LB284027 | 27 Jun 2023<br>27 Jun 2023 | 28 Jun 2023<br>28 Jun 2023 | 24 Dec 2023<br>24 Dec 2023 | 29 Jun 2023<br>29 Jun 2023 | 24 Dec 2023<br>24 Dec 2023 | 04 Jul 2023<br>04 Jul 2023 |



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

| Total Recoverable Element   | al Recoverable Elements in Soll/Waste Solids/Materials by ICPOES (continued) |          |             |             |                |             |              |                    |  |
|-----------------------------|------------------------------------------------------------------------------|----------|-------------|-------------|----------------|-------------|--------------|--------------------|--|
| Sample Name                 | Sample No.                                                                   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed           |  |
| Sample 10 0.1-0.2           | SE249904.022                                                                 | LB284027 | 27 Jun 2023 | 28 Jun 2023 | 24 Dec 2023    | 29 Jun 2023 | 24 Dec 2023  | 04 Jul 2023        |  |
| Sample 10 0.3-0.35          | SE249904.023                                                                 | LB284027 | 27 Jun 2023 | 28 Jun 2023 | 24 Dec 2023    | 29 Jun 2023 | 24 Dec 2023  | 04 Jul 2023        |  |
| QC3                         | SE249904.024                                                                 | LB284027 | 27 Jun 2023 | 28 Jun 2023 | 24 Dec 2023    | 29 Jun 2023 | 24 Dec 2023  | 04 Jul 2023        |  |
| Trace Metals (Dissolved) in | Water by ICPMS                                                               |          |             |             |                |             | Method: I    | ME-(AU)-[ENV]AN318 |  |
| Sample Name                 | Sample No.                                                                   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed           |  |
| Rinsate                     | SE249904.013                                                                 | LB283919 | 27 Jun 2023 | 28 Jun 2023 | 24 Dec 2023    | 29 Jun 2023 | 24 Dec 2023  | 29 Jun 2023        |  |

| Triazines in Soil |              |          |             |             |                |             | Method: I    | ME-(AU)-[ENV]AN420 |
|-------------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|--------------------|
| Sample Name       | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed           |
| Sample 1 0.1-0.25 | SE249904.001 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 2 0.1-0.25 | SE249904.003 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 3 0.1-0.2  | SE249904.005 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 4 0.1-0.15 | SE249904.007 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 5 0.1-0.4  | SE249904.009 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| QC1               | SE249904.011 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| QC2               | SE249904.012 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 6 0.1-0.2  | SE249904.014 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 7 0.1-0.2  | SE249904.016 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 8 0.1-0.2  | SE249904.018 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 9 0.1-0.2  | SE249904.020 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| Sample 10 0.1-0.2 | SE249904.022 | LB284020 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 29 Jun 2023 | 08 Aug 2023  | 05 Jul 2023        |
| VOC's in Soil     |              |          |             |             |                |             | Method: I    | ME-(AU)-[ENV]AN43  |
| Sample Name       | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed           |
| Sample 1 0.1-0.25 | SE249904.001 | LB283872 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 28 Jun 2023 | 11 Jul 2023  | 30 Jun 2023        |
| Sample 3 0.1-0.2  | SE249904.005 | LB283872 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 28 Jun 2023 | 11 Jul 2023  | 30 Jun 2023        |
| Sample 6 0.1-0.2  | SE249904.014 | LB283872 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 28 Jun 2023 | 11 Jul 2023  | 30 Jun 2023        |
| Sample 8 0.1-0.2  | SE249904.018 | LB283872 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 28 Jun 2023 | 11 Jul 2023  | 30 Jun 2023        |
| Sample 10 0.1-0.2 | SE249904.022 | LB283872 | 27 Jun 2023 | 28 Jun 2023 | 11 Jul 2023    | 28 Jun 2023 | 11 Jul 2023  | 30 Jun 2023        |



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| Carbamates in Soil                      |                   |               |       | Metrica. M | E-(AU)-[ENV]AI |
|-----------------------------------------|-------------------|---------------|-------|------------|----------------|
| Parameter                               | Sample Name       | Sample Number | Units | Criteria   | Recovery       |
| d14-p-terphenyl (Surrogate)             | Sample 1 0.1-0.25 | SE249904.001  | %     | 70 - 130%  | 96             |
|                                         | Sample 2 0.1-0.25 | SE249904.003  | %     | 70 - 130%  | 94             |
|                                         | Sample 3 0.1-0.2  | SE249904.005  | %     | 70 - 130%  | 94             |
|                                         | Sample 4 0.1-0.15 | SE249904.007  | %     | 70 - 130%  | 92             |
|                                         | Sample 5 0.1-0.4  | SE249904.009  | %     | 70 - 130%  | 96             |
|                                         | QC1               | SE249904.011  | %     | 70 - 130%  | 96             |
|                                         | QC2               | SE249904.012  | %     | 70 - 130%  | 94             |
|                                         | Sample 6 0.1-0.2  | SE249904.014  | %     | 70 - 130%  | 94             |
|                                         | Sample 7 0.1-0.2  | SE249904.016  | %     | 70 - 130%  | 92             |
|                                         | Sample 8 0.1-0.2  | SE249904.018  | %     | 70 - 130%  | 94             |
|                                         | Sample 9 0.1-0.2  | SE249904.020  | %     | 70 - 130%  | 92             |
|                                         | Sample 10 0.1-0.2 | SE249904.022  | %     | 70 - 130%  | 94             |
| DC Pesticides in Soil                   | ·                 |               |       | Method: M  | E-(AU)-[ENV]A  |
| Parameter                               | Sample Name       | Sample Number | Units | Criteria   | Recovery       |
| Tetrachloro-m-xylene (TCMX) (Surrogate) | Sample 1 0.1-0.25 | SE249904.001  | %     | 60 - 130%  | 74             |
| Tetrachioro-m-xylene (TCMX) (Surrogate) |                   | SE249904.001  |       | 60 - 130%  |                |
|                                         | Sample 3 0.1-0.2  |               | %     |            | 85             |
|                                         | Sample 6 0.1-0.2  | SE249904.014  | %     | 60 - 130%  | 83             |
|                                         | Sample 8 0.1-0.2  | SE249904.018  | %     | 60 - 130%  | 86             |
|                                         | Sample 10 0.1-0.2 | SE249904.022  | %     | 60 - 130%  | 83             |
| P Pesticides in Soil                    |                   |               |       | Method: M  | E-(AU)-[ENV]A  |
| Parameter                               | Sample Name       | Sample Number | Units | Criteria   | Recovery       |
| 2-fluorobiphenyl (Surrogate)            | Sample 1 0.1-0.25 | SE249904.001  | %     | 60 - 130%  | 102            |
|                                         | Sample 3 0.1-0.2  | SE249904.005  | %     | 60 - 130%  | 98             |
|                                         | Sample 6 0.1-0.2  | SE249904.014  | %     | 60 - 130%  | 98             |
|                                         | Sample 8 0.1-0.2  | SE249904.018  | %     | 60 - 130%  | 103            |
|                                         | Sample 10 0.1-0.2 | SE249904.022  | %     | 60 - 130%  | 102            |
| d14-p-terphenyl (Surrogate)             | Sample 1 0.1-0.25 | SE249904.001  | %     | 60 - 130%  | 98             |
|                                         | Sample 3 0.1-0.2  | SE249904.005  | %     | 60 - 130%  | 97             |
|                                         | Sample 6 0.1-0.2  | SE249904.014  | %     | 60 - 130%  | 98             |
|                                         | Sample 8 0.1-0.2  | SE249904.018  | %     | 60 - 130%  | 99             |
|                                         | Sample 10 0.1-0.2 | SE249904.022  | %     | 60 - 130%  | 100            |
| Synthetic Pyrethroids in Soil           |                   |               |       | Method: M  | E-(AU)-[ENV]A  |
| Parameter                               | Sample Name       | Sample Number | Units | Criteria   | Recovery       |
| d14-p-terphenyl (Surrogate)             | Sample 1 0.1-0.25 | SE249904.001  | %     | 70 - 130%  | 96             |
|                                         | Sample 2 0.1-0.25 | SE249904.003  | %     | 70 - 130%  | 94             |
|                                         | Sample 3 0.1-0.2  | SE249904.005  | %     | 70 - 130%  | 94             |
|                                         | Sample 4 0.1-0.15 | SE249904.007  | %     | 70 - 130%  | 92             |
|                                         | Sample 5 0.1-0.4  | SE249904.009  | %     | 70 - 130%  | 96             |
|                                         | Sample 6 0.1-0.2  | SE249904.014  | %     | 70 - 130%  | 94             |
|                                         | Sample 7 0.1-0.2  | SE249904.016  | %     | 70 - 130%  | 92             |
|                                         | Sample 7 0.1-0.2  | SE249904.018  | %     | 70 - 130%  | 94             |
|                                         | Sample 9 0.1-0.2  | SE249904.020  | %     | 70 - 130%  | 94             |
|                                         | Sample 9 0.1-0.2  | SE249904.020  | %     | 70 - 130%  | 94             |
|                                         | Sample To 0.1-0.2 | 3E249904.022  | /0    |            |                |
| riazines in Soil                        |                   |               |       |            | e-(au)-[env]a  |
| Parameter                               | Sample Name       | Sample Number | Units | Criteria   | Recovery       |
| d14-p-terphenyl (Surrogate)             | Sample 1 0.1-0.25 | SE249904.001  | %     | 70 - 130%  | 94             |
|                                         | Sample 2 0.1-0.25 | SE249904.003  | %     | 70 - 130%  | 94             |
|                                         | Sample 3 0.1-0.2  | SE249904.005  | %     | 70 - 130%  | 90             |
|                                         | Sample 4 0.1-0.15 | SE249904.007  | %     | 70 - 130%  | 92             |
|                                         | Sample 5 0.1-0.4  | SE249904.009  | %     | 70 - 130%  | 94             |
|                                         | QC1               | SE249904.011  | %     | 70 - 130%  | 94             |
|                                         | QC2               | SE249904.012  | %     | 70 - 130%  | 94             |
|                                         | Sample 6 0.1-0.2  | SE249904.014  | %     | 70 - 130%  | 94             |
|                                         | Sample 7 0.1-0.2  | SE249904.016  | %     | 70 - 130%  | 92             |
|                                         | Sample 8 0.1-0.2  | SE249904.018  | %     | 70 - 130%  | 92             |
|                                         | Sample 9 0.1-0.2  | SE249904.020  | %     | 70 - 130%  | 94             |
|                                         | Sample 10 0.1-0.2 | SE249904.022  | %     | 70 - 130%  | 90             |



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| VOC's in Soil                     |                   |               |       |           |            |
|-----------------------------------|-------------------|---------------|-------|-----------|------------|
| Parameter                         | Sample Name       | Sample Number | Units | Criteria  | Recovery % |
| Bromofluorobenzene (Surrogate)    | Sample 1 0.1-0.25 | SE249904.001  | %     | 60 - 130% | 96         |
|                                   | Sample 3 0.1-0.2  | SE249904.005  | %     | 60 - 130% | 95         |
|                                   | Sample 6 0.1-0.2  | SE249904.014  | %     | 60 - 130% | 83         |
|                                   | Sample 8 0.1-0.2  | SE249904.018  | %     | 60 - 130% | 75         |
| 14-1 2-dichloroethane (Surrogate) | Sample 10 0.1-0.2 | SE249904.022  | %     | 60 - 130% | 87         |
| d4-1,2-dichloroethane (Surrogate) | Sample 1 0.1-0.25 | SE249904.001  | %     | 60 - 130% | 95         |
|                                   | Sample 3 0.1-0.2  | SE249904.005  | %     | 60 - 130% | 81         |
|                                   | Sample 6 0.1-0.2  | SE249904.014  | %     | 60 - 130% | 93         |
|                                   | Sample 8 0.1-0.2  | SE249904.018  | %     | 60 - 130% | 92         |
|                                   | Sample 10 0.1-0.2 | SE249904.022  | %     | 60 - 130% | 85         |
| d8-toluene (Surrogate)            | Sample 1 0.1-0.25 | SE249904.001  | %     | 60 - 130% | 90         |
|                                   | Sample 3 0.1-0.2  | SE249904.005  | %     | 60 - 130% | 95         |
|                                   | Sample 6 0.1-0.2  | SE249904.014  | %     | 60 - 130% | 108        |
|                                   | Sample 8 0.1-0.2  | SE249904.018  | %     | 60 - 130% | 101        |
|                                   | Sample 10 0.1-0.2 | SE249904.022  | %     | 60 - 130% | 78         |



### SE249904 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Carbamates in Soil

| Carbamates in Soil     |            |                             |       | Meth               | od: ME-(AU)-[ENV]AN420 |
|------------------------|------------|-----------------------------|-------|--------------------|------------------------|
| Sample Number          |            | Parameter                   | Units | LOR                | Result                 |
| LB284020.001           | Carbamates | Carbofuran                  | mg/kg | 0.5                | <0.5                   |
|                        |            | Carbaryl                    | mg/kg | 0.5                | <0.5                   |
|                        | Surrogates | d14-p-terphenyl (Surrogate) | %     | -                  | 106                    |
| Mercury (dissolved) in | n Water    |                             |       | Method: ME-(AU)-[I | ENV]AN311(Perth)/AN312 |
| Sample Number          |            | Parameter                   | Units | LOR                | Result                 |
| LB284151.001           |            | Mercury                     | mg/L  | 0.0001             | <0.0001                |

### Mercury in Soil

| Mercury in Soil |           |       |      | od: ME-(AU)-[ENV]AN312 |
|-----------------|-----------|-------|------|------------------------|
| Sample Number   | Parameter | Units | LOR  | Result                 |
| LB284032.001    | Mercury   | mg/kg | 0.05 | <0.05                  |
| LB284033.001    | Mercury   | mg/kg | 0.05 | <0.05                  |

### OC Destisides in Sail

| OC Pesticides in Soil |                                         |       | Met | od: ME-(AU)-[ENV]AN |
|-----------------------|-----------------------------------------|-------|-----|---------------------|
| Sample Number         | Parameter                               | Units | LOR | Result              |
| LB284019.001          | Alpha BHC                               | mg/kg | 0.1 | <0.1                |
|                       | Hexachlorobenzene (HCB)                 | mg/kg | 0.1 | <0.1                |
|                       | Beta BHC                                | mg/kg | 0.1 | <0.1                |
|                       | Lindane (gamma BHC)                     | mg/kg | 0.1 | <0.1                |
|                       | Delta BHC                               | mg/kg | 0.1 | <0.1                |
|                       | Heptachlor                              | mg/kg | 0.1 | <0.1                |
|                       | Aldrin                                  | mg/kg | 0.1 | <0.1                |
|                       | Isodrin                                 | mg/kg | 0.1 | <0.1                |
|                       | Heptachlor epoxide                      | mg/kg | 0.1 | <0.1                |
|                       | Gamma Chlordane                         | mg/kg | 0.1 | <0.1                |
|                       | Alpha Chlordane                         | mg/kg | 0.1 | <0.1                |
|                       | Alpha Endosulfan                        | mg/kg | 0.2 | <0.2                |
|                       | p,p'-DDE                                | mg/kg | 0.1 | <0.1                |
|                       | Dieldrin                                | mg/kg | 0.2 | <0.2                |
|                       | Endrin                                  | mg/kg | 0.2 | <0.2                |
|                       | Beta Endosulfan                         | mg/kg | 0.2 | <0.2                |
|                       | p,p'-DDD                                | mg/kg | 0.1 | <0.1                |
|                       | Endrin aldehyde                         | mg/kg | 0.1 | <0.1                |
|                       | Endosulfan sulphate                     | mg/kg | 0.1 | <0.1                |
|                       | p,p'-DDT                                | mg/kg | 0.1 | <0.1                |
|                       | Endrin ketone                           | mg/kg | 0.1 | <0.1                |
|                       | Methoxychlor                            | mg/kg | 0.1 | <0.1                |
|                       | Mirex                                   | mg/kg | 0.1 | <0.1                |
| Surrogates            | Tetrachloro-m-xylene (TCMX) (Surrogate) | %     | -   | 83                  |
| P Pesticides in Soil  |                                         |       | Met | od: ME-(AU)-[ENV]AN |
| Sample Number         | Parameter                               | Units | LOR | Result              |
| B284019.001           | Azinphos-methyl (Guthion)               | mg/kg | 0.2 | <0.2                |
|                       | Bromophos Ethyl                         | mg/kg | 0.2 | <0.2                |
|                       | Chlorpyrifos (Chlorpyrifos Ethyl)       | mg/kg | 0.2 | <0.2                |
|                       | Diazinon (Dimpylate)                    | mg/kg | 0.5 | <0.5                |
|                       | Dichlorvos                              | mg/kg | 0.5 | <0.5                |
|                       | Dimethoate                              | mg/kg | 0.5 | <0.5                |
|                       | Ethion                                  | mg/kg | 0.2 | <0.2                |
|                       | Fenitrothion                            | mg/kg | 0.2 | <0.2                |
|                       | Malathion                               | mg/kg | 0.2 | <0.2                |

Methidathion

Parameter

Parathion-ethyl (Parathion)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Surrogates

Sample Number

<0.5

<0.2

95

98

Method: ME-(AU)-[ENV]AN420

0.5

0.2

-

-

LOR

mg/kg

mg/kg

%

%

Units



### SE249904 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Synthetic Pyrethroids in Soil (continued) Method: ME-(AU)-[ENV]AN420 Result Sample Number Parameter Units LOR LB284020.001 Surrogates d14-p-terphenyl (Surrogate) % 106 Synthetic Pyrethroids Bifenthrin mg/kg 0.5 < 0.5 cis-Permethrin 0.5 <0.5 mg/kg trans-Permethrin 0.5 <0.5 mg/kg Cvfluthrin mg/kg 1 <1 Cypermethrin mg/kg 1 <1 <0.5 Esfenvalerate 0.5 ma/ka Deltamethrin mg/kg 0.5 <0.5 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB284026.001 Arsenic, As mg/kg 1 <1 Cadmium, Cd mg/kg 0.3 < 0.3 <0.5 Chromium, Cr 0.5 mg/kg Copper, Cu 0.5 <0.5 mg/kg Nickel, Ni mg/kg 0.5 < 0.5 Lead, Pb <1 mg/kg 1 Zinc. Zn mg/kg 2 <2 I B284027 001 Arsenic, As 1 <1 mg/kg Cadmium, Cd <0.3 mg/kg 0.3 Chromium, Cr mg/kg 0.5 < 0.5 Copper, Cu 0.5 <0.5 mg/kg Nickel, Ni 0.5 <0.5 mg/kg Lead. Pb mg/kg 1 <1 Zinc, Zn mg/kg 2 <2 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Parameter Units Result LB283919.001 Arsenic µg/L 1 <1 Cadmium 0.1 <0.1 µg/L Chromium <1 µg/L 1 Coppe µg/L 1 <1 Lead µg/L 1 <1 Nickel <1 1 µg/L Zinc µg/L 5 <5 Triazines in Soi Method: ME-(AU)-[ENV]AN420 Sample Number Units LOR Result Parameter LB284020.001 Simazine mg/kg 0.5 < 0.5 Atrazine mg/kg 0.5 < 0.5 <0.5 Propazine mg/kg 0.5 Terbuthvlazine 0.5 <0.5 ma/ka Metribuzin mg/kg 0.5 < 0.5 0.5 <0.5 Prometryn mg/kg Terbutryn mg/kg 0.5 <0.5 Cyanazine mg/kg 0.5 <0.5 <1 Hexazinone mg/kg 1 Surrogates d14-p-terphenyl (Surrogate) % 102 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Result Parameter LB283872.001 Fumigants 2,2-dichloropropane 0.1 <0.1 mg/kg 1,2-dichloropropane mg/kg 0.1 < 0.1 cis-1,3-dichloropropene 0.1 <0.1 mg/kg <0.1 trans-1,3-dichloropropene mg/kg 0.1 1.2-dibromoethane (EDB) mg/kg 0.1 < 0.1 mg/kg Halogenated Aliphatics Dichlorodifluoromethane (CFC-12) 1 <1 Chloromethane 1 <1 mg/kg Vinyl chloride (Chloroethene) mg/kg 0.1 < 0.1 Bromomethane mg/kg 1 <1 Chloroethane <1 mg/kg 1 Trichlorofluoromethane mg/kg 1 <1 1,1-dichloroethene 0.1 <0.1 mg/kg



### SE249904 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) Sample Number Result Parameter Units LOR LB283872.001 Halogenated Aliphatics Iodomethane mg/kg 5 <5 Dichloromethane (Methylene chloride) mg/kg 0.5 < 0.5 Allyl chloride 0.1 <0.1 mg/kg trans-1,2-dichloroethene 0.1 <0.1 mg/kg 1.1-dichloroethane mg/kg 0 1 <0.1 cis-1,2-dichloroethene mg/kg 0.1 <0.1 <0.1 Bromochloromethane 0.1 ma/ka 1,2-dichloroethane mg/kg 0.1 < 0.1 0.1 <0.1 1,1,1-trichloroethane mg/kg 1,1-dichloropropene 0.1 <0.1 mg/kg Carbon tetrachloride mg/kg 0.1 <0.1 Dibromomethane 0.1 <0.1 mg/kg Trichloroethene (Trichloroethylene,TCE) <0.1 ma/ka 0.1 1,1,2-trichloroethane mg/kg 0.1 <0.1 0.1 <0.1 1,3-dichloropropane mg/kg Tetrachloroethene (Perchloroethylene,PCE) 0.1 <0.1 mg/kg 1,1,1,2-tetrachloroethane mg/kg 0.1 < 0.1 0.1 <0.1 1,1,2,2-tetrachloroethane mg/kg 1,2,3-trichloropropane 0.1 <0.1 mg/kg trans-1,4-dichloro-2-butene mg/kg 1 <1 0.1 <0.1 1,2-dibromo-3-chloropropane mg/kg Hexachlorobutadiene 0.1 <0.1 ma/ka Halogenated Aromatics Chlorobenzene mg/kg 0.1 <0.1 <0.1 Bromobenzene mg/kg 0.1 2-chlorotoluene <0.1 mg/kg 0.1 4-chlorotoluene mg/kg 0.1 <0.1 1,3-dichlorobenzene 0.1 <0.1 mg/kg 1.4-dichlorobenzene < 0.1 mg/kg 0.1 1,2-dichlorobenzene 0.1 <0.1 mg/kg 1.2.4-trichlorobenzene 0.1 <0.1 mg/kg 1,2,3-trichlorobenzene <0.1 mg/kg 0.1 Monocyclic Aromatic Benzene mg/kg 0.1 < 0.1 Hydrocarbons 0.1 <0.1 Toluene mg/kg Ethylbenzene mg/kg 0.1 <0.1 m/p-xylene mg/kg 0.2 <0.2 <0.1 Styrene (Vinyl benzene) mg/kg 0.1 <0.1 o-xvlene ma/ka 0.1 Isopropylbenzene (Cumene) mg/kg 0.1 <0.1 <0.1 n-propylbenzene 0.1 mg/kg 1,3,5-trimethylbenzene mg/kg 0.1 <0.1 tert-butylbenzene mg/kg 0.1 <0.1 1,2,4-trimethylbenzene mg/kg 0.1 <0.1 <0.1 sec-butvlbenzene mg/kg 0.1 p-isopropyltoluene mg/kg 0.1 <0.1 n-butylbenzene 0.1 <0.1 mg/kg Nitrogenous Compounds Acrylonitrile mg/kg 0.1 <0.1 2-nitropropane 10 <10 mg/kg Oxygenated Compounds 10 Acetone (2-propanone) <10 mg/kg MtBE (Methyl-tert-butyl ether) 0.1 <0.1 mg/kg Vinyl acetate\* mg/kg 10 <10 MIBK (4-methyl-2-pentanone) 1 <1 mg/kg 2-hexanone (MBK) ma/ka 5 <5 Polycyclic VOCs Naphthalene (VOC)\* mg/kg 0.1 <0.1 Sulphonated Carbon disulfide 0.5 <0.5 mg/kg Surrogates 97 d4-1,2-dichloroethane (Surrogate) % d8-toluene (Surrogate) % 110 -Bromofluorobenzene (Surrogate) % 92 Totals Total Other Chlorinated Hydrocarbons VIC EPA\* mg/kg 1.8 <1.8 Total Chlorinated Hydrocarbons VIC EPA\* 1.8 <1.8 mg/kg Total BTEX\* 0.6 <0.6

Trihalomethanes

Chloroform (THM)

<0.1

mg/kg

mg/kg

0.1



### SE249904 R0

<0.1

<0.1

mg/kg

mg/kg

0.1

0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Dibromochloromethane (THM)

Bromoform (THM)

# Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result LB283872.001 Trihalomethanes Bromodichloromethane (THM) mg/kg 0.1 <0.1</td>



# **DUPLICATES**

Mathed ME (ALD IEND GANIDAD

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

| Original        | Duplicate    |            | Parameter                   | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|-----------------|--------------|------------|-----------------------------|-------|-----|----------|-----------|------------|-------|
| SE249904.022 LB | LB284020.017 | Carbamates | Carbofuran                  | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|                 |              |            | Carbaryl                    | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|                 |              | Surrogates | d14-p-terphenyl (Surrogate) | mg/kg | -   | 0.5      | 0.5       | 30         | 2     |

| Original     | Duplicate    | Parameter | Units | LOR    | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-----------|-------|--------|----------|-----------|------------|-------|
| SE249988.012 | LB284151.021 | Mercury   | μg/L  | 0.0001 | <0.0001  | <0.0001   | 200        | 0     |

### Mercury in Soil

| Mercury in Soil     |              |            |                                         |     |         |            | Me          | thod: ME-(AU) | -[ENV]AN312 |
|---------------------|--------------|------------|-----------------------------------------|-----|---------|------------|-------------|---------------|-------------|
| Original            | Duplicate    |            | Parameter                               | Ur  | nits LO | DR Origina | I Duplicate | e Criteria %  | RPD %       |
| SE249877.021        | LB284032.014 |            | Mercury                                 | mç  | g/kg 0. | 05 <0.05   | <0.05       | 200           | 0           |
| SE249904.005        | LB284032.020 |            | Mercury                                 | mį  | g/kg 0. | 05 <0.05   | <0.05       | 200           | 0           |
| SE249904.016        | LB284033.014 |            | Mercury                                 | mį  | g/kg 0. | 05 <0.05   | <0.05       | 200           | 0           |
| SE249904.024        | LB284033.023 |            | Mercury                                 | mį  | g/kg 0. | 05 <0.05   | <0.05       | 200           | 0           |
| Moisture Content    |              |            |                                         |     |         |            | Me          | thod: ME-(AU) | -IENVIAN002 |
| Original            | Duplicate    |            | Parameter                               | Lir | nits LO | OR Origina |             | e Criteria %  |             |
| SE249877.021        | LB284094.011 |            | % Moisture                              |     | w/w     |            | 2.1         | 81            | 12          |
| SE249904.005        | LB284094.017 |            | % Moisture                              |     | w/w     |            | 16.9        | 35            | 35          |
| SE249904.005        | LB284095.011 |            | % Moisture                              |     | w/w     |            | 16.1        | 36            | 2           |
| SE249904.010        | LB284095.020 |            | % Moisture                              |     | w/w     |            | 9.1         | 41            | 1           |
|                     |              |            | // Moisture                             | /01 | w/w     | 9.0        |             |               |             |
| OC Pesticides in Sc |              |            | -                                       |     |         |            |             | thod: ME-(AU) |             |
| Original            | Duplicate    |            | Parameter                               |     | nits LO |            |             | e Criteria %  |             |
| SE249872.010        | LB284019.014 |            | Alpha BHC                               |     | g/kg 0  |            | <0.1        | 200           | 0           |
|                     |              |            | Hexachlorobenzene (HCB)                 |     | g/kg 0  |            | <0.1        | 200           | 0           |
|                     |              |            | Beta BHC                                |     | g/kg 0  |            | <0.1        | 200           | 0           |
|                     |              |            | Lindane (gamma BHC)                     | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Delta BHC                               | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Heptachlor                              | mg  | g/kg 0  |            | <0.1        | 200           | 0           |
|                     |              |            | Aldrin                                  | mç  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Isodrin                                 | mę  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Heptachlor epoxide                      | mę  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Gamma Chlordane                         | mı  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Alpha Chlordane                         | mş  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Alpha Endosulfan                        | mş  | g/kg 0  | 2 <0.2     | <0.2        | 200           | 0           |
|                     |              |            | o,p'-DDE*                               | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | p,p'-DDE                                | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Dieldrin                                | me  | g/kg 0  | .2 <0.2    | <0.2        | 200           | 0           |
|                     |              |            | Endrin                                  | mg  | g/kg 0  | .2 <0.2    | <0.2        | 200           | 0           |
|                     |              |            | Beta Endosulfan                         | mg  | g/kg 0  | .2 <0.2    | <0.2        | 200           | 0           |
|                     |              |            | o,p'-DDD*                               | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | p,p'-DDD                                | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Endrin aldehyde                         | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Endosulfan sulphate                     | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | o,p'-DDT*                               | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | p,p'-DDT                                | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Endrin ketone                           | mç  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Methoxychlor                            | mç  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Mirex                                   | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | trans-Nonachlor                         | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Total CLP OC Pesticides                 | mç  | g/kg    | I <1       | <1          | 200           | 0           |
|                     |              |            | Total OC VIC EPA                        | mç  | g/kg    | I <1       | <1          | 200           | 0           |
|                     |              | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate) | mę  | g/kg    | 0.12       | 0.11        | 30            | 5           |
| SE249904.022        | LB284019.024 |            | Alpha BHC                               | mę  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Hexachlorobenzene (HCB)                 | mg  | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Beta BHC                                |     | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Lindane (gamma BHC)                     |     | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Delta BHC                               |     | g/kg 0  | .1 <0.1    | <0.1        | 200           | 0           |
|                     |              |            | Heptachlor                              |     | g/kg 0  |            | <0.1        | 200           | 0           |
|                     |              |            |                                         |     |         |            |             |               |             |



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

### OC Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN420 Original Duplicate Criteria % RPD % Original Duplicate Parameter Units LOR SE249904.022 LB284019.024 Aldrin <0.1 200 0.1 <0.1 0 mg/kg Isodrin mg/kg 0.1 < 0.1 < 0.1 200 0 Heptachlor epoxide 0.1 <0.1 <0.1 200 0 mg/kg Gamma Chlordane 0.1 <0.1 <0.1 200 0 mg/kg Alpha Chlordane mg/kg 01 <0.1 <0.1 200 0 Alpha Endosulfan 0.2 <0.2 <0.2 200 0 mg/kg o,p'-DDE\* <0.1 200 0.1 <0.1 0 ma/ka p,p'-DDE mg/kg 0.1 < 0.1 < 0.1 200 0 Dieldrin 0.2 <0.2 <0.2 200 0 mg/kg Endrin 0.2 <0.2 <0.2 200 0 mg/kg Beta Endosulfan mg/kg 0.2 <0.2 <0.2 200 0 o,p'-DDD\* 0.1 <0.1 <0.1 200 0 mg/kg p.p'-DDD 0.1 < 0.1 <0.1 200 0 mg/kg Endrin aldehyde mg/kg 0.1 < 0.1 <0.1 200 0 Endosulfan sulphate 0.1 <0.1 <0.1 200 0 mg/kg o,p'-DDT\* 0.1 <0.1 <0.1 200 0 mg/kg p,p'-DDT mg/kg 0.1 < 0.1 < 0.1 200 0 Endrin ketone 0.1 <0.1 <0.1 200 0 mg/kg Methoxychlor 0.1 <0.1 <0.1 200 0 mg/kg Mirex mg/kg 0.1 <0.1 < 0.1 200 0 trans-Nonachlor 0.1 <0.1 <0.1 200 0 mg/kg Total CLP OC Pesticides <1 <1 200 0 mg/kg 1 Total OC VIC EPA mg/kg <1 <1 200 0 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 0.12 0.13 30 2 mg/kg **OP Pesticides in Soil** Method: ME-(AU)-[ENV]AN420 Original Duplicate Parameter Units LOR Original Duplicate Criteria % RPD %

| SE249872.010       | LB284019.014 |             | Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|--------------------|--------------|-------------|-----------------------------------|-------|-----|----------|-----------|--------------|------------|
|                    |              |             | Bromophos Ethyl                   | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Dichlorvos                        | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Dimethoate                        | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Ethion                            | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Fenitrothion                      | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Malathion                         | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Methidathion                      | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Total OP Pesticides*              | mg/kg | 1.7 | <1.7     | <1.7      | 200          | 0          |
|                    |              | Surrogates  | 2-fluorobiphenyl (Surrogate)      | mg/kg | -   | 0.5      | 0.6       | 30           | 13         |
|                    |              |             | d14-p-terphenyl (Surrogate)       | mg/kg | -   | 0.5      | 0.5       | 30           | 9          |
| SE249904.022       | LB284019.024 |             | Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Bromophos Ethyl                   | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Dichlorvos                        | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Dimethoate                        | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Ethion                            | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Fenitrothion                      | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Malathion                         | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Methidathion                      | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0          |
|                    |              |             | Total OP Pesticides*              | mg/kg | 1.7 | <1.7     | <1.7      | 200          | 0          |
|                    |              | Surrogates  | 2-fluorobiphenyl (Surrogate)      | mg/kg | -   | 0.5      | 0.5       | 30           | 1          |
|                    |              |             | d14-p-terphenyl (Surrogate)       | mg/kg | -   | 0.5      | 0.5       | 30           | 2          |
| Synthetic Pyrethro | ids in Soil  |             |                                   |       |     |          | Metho     | od: ME-(AU)- | [ENV]AN420 |
| Original           | Duplicate    |             | Parameter                         | Units | LOR | Original | Duplicate | Criteria %   | RPD %      |
| SE249904.022       | LB284020.017 | Surrogates  | d14-p-terphenyl (Surrogate)       | mg/kg | -   | 0.5      | 0.5       | 30           | 2          |
|                    |              | Synthetic   | Bifenthrin                        | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              | Pyrethroids | cis-Permethrin                    | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             | trans-Permethrin                  | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0          |
|                    |              |             |                                   |       |     |          |           |              |            |



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

| Original<br>SE249904.022                                                                                  |                                           |                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                | -[ENV]AN                                                                                                |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 0004 000                                                                                                  | Duplicate                                 |                     | Parameter                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOR                                                                                                     | Original                                                                                                                                              | Duplicate                                                                                                                                                   | Criteria %                                                                                                                                                                     | RPD %                                                                                                   |
| SE249904.022                                                                                              | LB284020.017                              | Synthetic           | Cyfluthrin                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | <1                                                                                                                                                    | <1                                                                                                                                                          | 200                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           | Pyrethroids         | Cypermethrin                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | <1                                                                                                                                                    | <1                                                                                                                                                          | 200                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           |                     | Esfenvalerate                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | <0.5                                                                                                                                                  | <0.5                                                                                                                                                        | 200                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           |                     | Deltamethrin                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | <0.5                                                                                                                                                  | <0.5                                                                                                                                                        | 200                                                                                                                                                                            | 0                                                                                                       |
| otal Recoverable                                                                                          | Elements in Soil/Wa                       | ste Solids/Material | s by ICPOES                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                                       | Method: ME                                                                                                                                                  | -(AU)-[ENV]A                                                                                                                                                                   | N040/AN                                                                                                 |
| Original                                                                                                  | Duplicate                                 |                     | Parameter                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOR                                                                                                     | Original                                                                                                                                              |                                                                                                                                                             | Criteria %                                                                                                                                                                     |                                                                                                         |
| SE249877.021                                                                                              | LB284026.014                              |                     | Arsenic, As                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                       | 2                                                                                                                                                     | 3                                                                                                                                                           | 68                                                                                                                                                                             | 36                                                                                                      |
| 3E249077.021                                                                                              | LB204020.014                              |                     |                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                |                                                                                                         |
|                                                                                                           |                                           |                     | Cadmium, Cd                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                     | <0.3                                                                                                                                                  | <0.3                                                                                                                                                        | 200                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           |                     | Chromium, Cr                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 5.0                                                                                                                                                   | 6.8                                                                                                                                                         | 38                                                                                                                                                                             | 30                                                                                                      |
|                                                                                                           |                                           |                     | Copper, Cu                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 8.1                                                                                                                                                   | 9.1                                                                                                                                                         | 36                                                                                                                                                                             | 12                                                                                                      |
|                                                                                                           |                                           |                     | Nickel, Ni                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 3.1                                                                                                                                                   | 4.6                                                                                                                                                         | 43                                                                                                                                                                             | 40                                                                                                      |
|                                                                                                           |                                           |                     | Lead, Pb                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | 8                                                                                                                                                     | 9                                                                                                                                                           | 42                                                                                                                                                                             | 16                                                                                                      |
|                                                                                                           |                                           |                     | Zinc, Zn                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                       | 27                                                                                                                                                    | 30                                                                                                                                                          | 37                                                                                                                                                                             | 11                                                                                                      |
| SE249904.005                                                                                              | LB284026.020                              |                     | Arsenic, As                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | 1                                                                                                                                                     | <1                                                                                                                                                          | 122                                                                                                                                                                            | 19                                                                                                      |
|                                                                                                           |                                           |                     | Cadmium, Cd                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                     | <0.3                                                                                                                                                  | <0.3                                                                                                                                                        | 200                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           |                     | Chromium, Cr                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 7.0                                                                                                                                                   | 5.3                                                                                                                                                         | 38                                                                                                                                                                             | 29                                                                                                      |
|                                                                                                           |                                           |                     | Copper, Cu                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 3.5                                                                                                                                                   | 3.3                                                                                                                                                         | 45                                                                                                                                                                             | 4                                                                                                       |
|                                                                                                           |                                           |                     | Nickel, Ni                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 1.0                                                                                                                                                   | 0.8                                                                                                                                                         | 85                                                                                                                                                                             | 23                                                                                                      |
|                                                                                                           |                                           |                     | Lead, Pb                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | 10                                                                                                                                                    | 9                                                                                                                                                           | 41                                                                                                                                                                             | 11                                                                                                      |
|                                                                                                           |                                           |                     | Zinc, Zn                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                       | 13                                                                                                                                                    | 13                                                                                                                                                          | 46                                                                                                                                                                             | 4                                                                                                       |
| SE249904.016                                                                                              | LB284027.014                              |                     | Arsenic, As                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | 2                                                                                                                                                     | 2                                                                                                                                                           | 85                                                                                                                                                                             | 3                                                                                                       |
|                                                                                                           |                                           |                     | Cadmium, Cd                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                     | <0.3                                                                                                                                                  | <0.3                                                                                                                                                        | 200                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           |                     | Chromium, Cr                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 8.8                                                                                                                                                   | 6.5                                                                                                                                                         | 37                                                                                                                                                                             | 30                                                                                                      |
|                                                                                                           |                                           |                     | Copper, Cu                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 3.6                                                                                                                                                   | 3.9                                                                                                                                                         | 43                                                                                                                                                                             | 9                                                                                                       |
|                                                                                                           |                                           |                     | Nickel, Ni                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 1.3                                                                                                                                                   | 1.1                                                                                                                                                         | 71                                                                                                                                                                             | 13                                                                                                      |
|                                                                                                           |                                           |                     | Lead, Pb                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | 12                                                                                                                                                    | 12                                                                                                                                                          | 38                                                                                                                                                                             | 2                                                                                                       |
|                                                                                                           |                                           |                     | Zinc, Zn                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                       | 13                                                                                                                                                    | 14                                                                                                                                                          | 45                                                                                                                                                                             | 4                                                                                                       |
| SE249904.024                                                                                              | LB284027.023                              |                     | Arsenic, As                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | 3                                                                                                                                                     | 3                                                                                                                                                           | 64                                                                                                                                                                             | 3                                                                                                       |
| 02240004.024                                                                                              | 20204027.020                              |                     | Cadmium, Cd                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                     | <0.3                                                                                                                                                  | <0.3                                                                                                                                                        | 200                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           |                     | Chromium, Cr                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                     | 11                                                                                                                                                    | 11                                                                                                                                                          | 34                                                                                                                                                                             | 0                                                                                                       |
|                                                                                                           |                                           |                     |                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                |                                                                                                         |
|                                                                                                           |                                           |                     | Copper, Cu                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | <0.5                                                                                                                                                  | <0.5                                                                                                                                                        | 136                                                                                                                                                                            | 0                                                                                                       |
|                                                                                                           |                                           |                     | Nickel, Ni                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                     | 1.5                                                                                                                                                   | 1.4                                                                                                                                                         | 64                                                                                                                                                                             | 3                                                                                                       |
|                                                                                                           |                                           |                     | Lead, Pb                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                       | 12                                                                                                                                                    | 14                                                                                                                                                          | 38                                                                                                                                                                             | 17                                                                                                      |
|                                                                                                           |                                           |                     | Zinc, Zn                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                       | 6                                                                                                                                                     | 6                                                                                                                                                           | 65                                                                                                                                                                             | 0                                                                                                       |
| race Metals (Dise                                                                                         | solved) in Water by I                     | CPMS                |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                                       | Meth                                                                                                                                                        | nod: ME-(AU)                                                                                                                                                                   | -[ENV]AN                                                                                                |
|                                                                                                           |                                           |                     |                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOD                                                                                                     | <u></u>                                                                                                                                               | Duplicato                                                                                                                                                   |                                                                                                                                                                                |                                                                                                         |
| Original                                                                                                  | Duplicate                                 |                     | Parameter                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOR                                                                                                     | Original                                                                                                                                              | Duplicate                                                                                                                                                   | Criteria %                                                                                                                                                                     | RPD                                                                                                     |
| -                                                                                                         | Duplicate<br>LB283919.014                 |                     | Parameter<br>Arsenic                                                                                                                                                                                                                                                                                                  | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                       | Original<br>1                                                                                                                                         | 1                                                                                                                                                           | Criteria %<br>84                                                                                                                                                               | RPD<br>0                                                                                                |
| -                                                                                                         |                                           |                     |                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                |                                                                                                         |
| -                                                                                                         |                                           |                     | Arsenic                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                       | 1                                                                                                                                                     | 1                                                                                                                                                           | 84                                                                                                                                                                             | 0                                                                                                       |
|                                                                                                           |                                           |                     | Arsenic<br>Cadmium<br>Chromium                                                                                                                                                                                                                                                                                        | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>0.1<br>1                                                                                           | 1<br>0.2<br><1                                                                                                                                        | 1<br>0.2<br><1                                                                                                                                              | 84<br>62<br>200                                                                                                                                                                | 0<br>24<br>0                                                                                            |
|                                                                                                           |                                           |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper                                                                                                                                                                                                                                                                              | μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1                                                                                      | 1<br>0.2<br><1<br>1                                                                                                                                   | 1<br>0.2<br><1<br>2                                                                                                                                         | 84<br>62<br>200<br>67                                                                                                                                                          | 0<br>24<br>0<br>58                                                                                      |
| -                                                                                                         |                                           |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                                                                                                                                                                                                                      | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>0.1<br>1<br>1<br>1                                                                                 | 1<br>0.2<br><1<br>1<br><1                                                                                                                             | 1<br>0.2<br><1<br>2<br><1                                                                                                                                   | 84<br>62<br>200<br>67<br>200                                                                                                                                                   | 0<br>24<br>0<br>58<br>0                                                                                 |
| -                                                                                                         |                                           |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel                                                                                                                                                                                                                                                            | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>1<br>1                                                                       | 1<br>0.2<br><1<br>1<br><1<br><1                                                                                                                       | 1<br>0.2<br><1<br>2<br><1<br><1<br><1                                                                                                                       | 84<br>62<br>200<br>67<br>200<br>157                                                                                                                                            | 0<br>24<br>0<br>58<br>0<br>0                                                                            |
| SE249915.002                                                                                              | LB283919.014                              |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Zinc                                                                                                                                                                                                                                                    | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>0.1<br>1<br>1<br>1<br>1<br>1<br>5                                                                  | 1<br>0.2<br><1<br>1<br><1<br><1<br><1<br>200                                                                                                          | 1<br>0.2<br><1<br>2<br><1<br><1<br><1<br>200                                                                                                                | 84<br>62<br>200<br>67<br>200<br>157<br>17                                                                                                                                      | 0<br>24<br>0<br>58<br>0<br>0<br>2                                                                       |
| SE249915.002                                                                                              |                                           |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Zinc<br>Arsenic                                                                                                                                                                                                                                         | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>1<br>5<br>5                                                                  | 1<br>0.2<br><1<br>1<br><1<br><1<br><1<br>200<br><1                                                                                                    | 1<br>0.2<br><1<br>2<br><1<br><1<br><1<br>200<br><1                                                                                                          | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200                                                                                                                               | 0<br>24<br>0<br>58<br>0<br>0<br>2<br>0                                                                  |
| SE249915.002                                                                                              | LB283919.014                              |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Zinc<br>Arsenic<br>Cadmium                                                                                                                                                                                                                              | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>1<br>5<br>1<br>0.1                                                           | 1<br>0.2<br><1<br>1<br><1<br><1<br><1<br>200<br><1<br><0.1                                                                                            | 1<br>0.2<br><1<br>2<br><1<br><1<br><1<br>200<br><1<br><0.1                                                                                                  | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200                                                                                                                        | 0<br>24<br>0<br>58<br>0<br>0<br>2<br>2<br>0<br>0                                                        |
| SE249915.002                                                                                              | LB283919.014                              |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Zinc<br>Arsenic<br>Cadmium<br>Chromium                                                                                                                                                                                                                  | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>5<br>5<br>1<br>0.1<br>1                                                      | 1<br>0.2<br><1<br>1<br><1<br><1<br>200<br><1<br><0.1<br><1                                                                                            | 1<br>0.2<br><1<br>2<br><1<br><1<br>200<br><1<br><0.1<br><1                                                                                                  | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200                                                                                                                 | 0<br>24<br>0<br>58<br>0<br>0<br>2<br>2<br>0<br>0<br>0<br>0                                              |
| SE249915.002                                                                                              | LB283919.014                              |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Zinc<br>Arsenic<br>Cadmium<br>Chromium<br>Copper                                                                                                                                                                                                        | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>5<br>5<br>1<br>0.1<br>1<br>1<br>1                                            | 1<br>0.2<br><1<br>1<br><1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1                                                                                | 1<br>0.2<br><1<br>2<br><1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1                                                                                      | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200                                                                                                   | 0<br>24<br>0<br>58<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0                                              |
| SE249915.002                                                                                              | LB283919.014                              |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Zinc<br>Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                                                                                                                                                | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>1                                       | 1<br>0.2<br><1<br>1<br><1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1                                                                    | 1<br>0.2<br><1<br>2<br><1<br>2<br>00<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1                                                                      | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200                                                                                            | 0<br>24<br>0<br>58<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    |
| SE249915.002                                                                                              | LB283919.014                              |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Lead         Nickel                                                                                              | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>1<br>1                                       | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1                                                                    | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1                                                                          | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                       | 0<br>24<br>0<br>58<br>0<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               |
| SE249915.002                                                                                              | LB283919.014                              |                     | Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Zinc<br>Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead                                                                                                                                                                                                | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>1                                       | 1<br>0.2<br><1<br>1<br><1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1                                                                    | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><5                                                              | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                 | 0<br>24<br>0<br>58<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     |
| SE249915.002<br>SE249915.010                                                                              | LB283919.014                              |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Lead         Nickel                                                                                              | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>1<br>1                                       | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1                                                                    | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><5                                                              | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                       | 0<br>24<br>0<br>58<br>0<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     |
| SE249915.002<br>SE249915.010                                                                              | LB283919.014                              |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Lead         Nickel                                                                                              | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>1<br>1                                       | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1                                                                    | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Meth                                                            | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                 | 0<br>24<br>0<br>58<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     |
| SE249915.002<br>SE249915.010<br>riazines in Soli<br>Original                                              | LB283919.014                              |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Zadmium         Chromium         Copper         Lead         Nickel         Zinc    | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>5                                       | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                          | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Meth                                                            | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                 | 0<br>24<br>0<br>58<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     |
| SE249915.002<br>SE249915.010<br>riazines in Soli<br>Original                                              | LB283919.014<br>LB283919.023<br>Duplicate |                     | Arsenic Cadmium Chromium Copper Lead Nickel Zinc Arsenic Cadmium Chromium Copper Lead Nickel Zinc Zinc                                                                                                                                                                                                                | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>5<br>5                                  | 1<br>0.2<br><1<br>1<br><1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Original                          | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><5<br>Meth<br>Duplicate                                             | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                 | 0<br>24<br>0<br>58<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SE249915.002<br>SE249915.010<br>SE249915.010                                                              | LB283919.014<br>LB283919.023<br>Duplicate |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Nickel         Zinc         Nickel         Zinc         Parameter         Simazine         Atrazine | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>0.1<br>1<br>1<br>1<br>5<br>1<br>1<br>0.1<br>1<br>1<br>1<br>1<br>5<br>5<br><b>LOR</b><br>0.5<br>0.5 | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Original<br><0.5<br><0.5                                  | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Meth<br>Duplicate<br><0.5<br><0.5                               | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br><b>Criteria %</b><br>200<br><b>Criteria %</b>                      | 0<br>24<br>0<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       |
| SE249915.002<br>SE249915.010<br>SE249915.010                                                              | LB283919.014<br>LB283919.023<br>Duplicate |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Vickel         Zinc         Parameter         Simazine         Atrazine         Propazine           | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 1<br>0.1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>5<br>5<br><b>LOR</b><br>0.5<br>0.5           | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Original<br><0.5<br><0.5<br><0.5                          | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br><b>Meth</b><br><b>Duplicate</b><br><0.5<br><0.5<br><0.5         | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br><b>Criteria %</b><br>200<br><b>Criteria %</b><br>200<br>200<br>200        | 0<br>24<br>0<br>58<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Original<br>SE249915.002<br>SE249915.010<br>SE249915.010<br>'riazines in Soli<br>Original<br>SE249904.022 | LB283919.014<br>LB283919.023<br>Duplicate |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Parameter         Simazine         Atrazine         Propazine         Terbuthylazine                | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>0.1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>5<br>5<br><b>LOR</b><br>0.5<br>0.5<br>0.5    | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br>200<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Original<br><0.5<br><0.5<br><0.5<br><0.5 | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br><b>Meth</b><br><b>Duplicate</b><br><0.5<br><0.5<br><0.5<br><0.5 | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br><b>Criteria %</b><br>200<br><b>Criteria %</b><br>200<br>200<br>200<br>200 | 0<br>24<br>0<br>58<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| SE249915.002<br>SE249915.010<br>riazines in Soli<br>Original                                              | LB283919.014<br>LB283919.023<br>Duplicate |                     | Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Arsenic         Cadmium         Chromium         Copper         Lead         Nickel         Zinc         Vickel         Zinc         Parameter         Simazine         Atrazine         Propazine           | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | 1<br>0.1<br>1<br>1<br>5<br>1<br>0.1<br>1<br>1<br>1<br>1<br>5<br>5<br><b>LOR</b><br>0.5<br>0.5           | 1<br>0.2<br><1<br>1<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br>Original<br><0.5<br><0.5<br><0.5                          | 1<br>0.2<br><1<br>2<br><1<br>200<br><1<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><5<br><b>Meth</b><br><b>Duplicate</b><br><0.5<br><0.5<br><0.5         | 84<br>62<br>200<br>67<br>200<br>157<br>17<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br><b>Criteria %</b><br>200<br><b>Criteria %</b><br>200<br>200<br>200        | 0<br>24<br>0<br>58<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

|              | continued)   |             |                                           |       |     |          |           | od: ME-(AU)· |          |
|--------------|--------------|-------------|-------------------------------------------|-------|-----|----------|-----------|--------------|----------|
| Original     | Duplicate    |             | Parameter                                 | Units | LOR | Original | Duplicate | Criteria %   | RPD %    |
| SE249904.022 | LB284020.017 |             | Cyanazine                                 | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0        |
|              |              |             | Hexazinone                                | mg/kg | 1   | <1       | <1        | 200          | 0        |
|              |              | Surrogates  | d14-p-terphenyl (Surrogate)               | mg/kg | -   | 0.5      | 0.5       | 30           | 2        |
| OC's in Soil |              |             |                                           |       |     |          | Meth      | od: ME-(AU)· | -[ENV]AN |
| Original     | Duplicate    |             | Parameter                                 | Units | LOR | Original | Duplicate | Criteria %   | RPD %    |
| SE249904.018 | LB283872.014 | Fumigants   | 2,2-dichloropropane                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              | Ū           | 1,2-dichloropropane                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | cis-1,3-dichloropropene                   | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | trans-1,3-dichloropropene                 | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,2-dibromoethane (EDB)                   | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              | Halogenated | Dichlorodifluoromethane (CFC-12)          | mg/kg | 1   | <1       | <1        | 200          | 0        |
|              |              | Aliphatics  | Chloromethane                             | mg/kg | 1   | <1       | <1        | 200          | 0        |
|              |              |             | Vinyl chloride (Chloroethene)             | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Bromomethane                              | mg/kg | 1   | <1       | <1        | 200          | 0        |
|              |              |             | Chloroethane                              | mg/kg | 1   | <1       | <1        | 200          | 0        |
|              |              |             | Trichlorofluoromethane                    | mg/kg | 1   | <1       | <1        | 200          | 0        |
|              |              |             | 1,1-dichloroethene                        | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | lodomethane                               | mg/kg | 5   | <5       | <5        | 200          | 0        |
|              |              |             | Dichloromethane (Methylene chloride)      | mg/kg | 0.5 | <0.5     | <0.5      | 200          | 0        |
|              |              |             | Allyl chloride                            | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | trans-1,2-dichloroethene                  | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,1-dichloroethane                        | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | cis-1,2-dichloroethene                    | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Bromochloromethane                        | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,2-dichloroethane                        | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,1,1-trichloroethane                     | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,1-dichloropropene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Carbon tetrachloride                      | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Dibromomethane                            | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Trichloroethene (Trichloroethylene, TCE)  | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,1,2-trichloroethane                     | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,3-dichloropropane                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Tetrachloroethene (Perchloroethylene,PCE) | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,1,1,2-tetrachloroethane                 | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,1,2,2-tetrachloroethane                 | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,2,3-trichloropropane                    | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | trans-1,4-dichloro-2-butene               | mg/kg | 1   | <1       | <1        | 200          | 0        |
|              |              |             | 1,2-dibromo-3-chloropropane               | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Hexachlorobutadiene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              | Halogenated | Chlorobenzene                             | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              | Aromatics   | Bromobenzene                              | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 2-chlorotoluene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 4-chlorotoluene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,3-dichlorobenzene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,4-dichlorobenzene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,2-dichlorobenzene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,2,4-trichlorobenzene                    | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,2,3-trichlorobenzene                    | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              | Monocyclic  | Benzene                                   | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              | Aromatic    | Toluene                                   | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Ethylbenzene                              | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | m/p-xylene                                | mg/kg | 0.2 | <0.2     | <0.2      | 200          | 0        |
|              |              |             | Styrene (Vinyl benzene)                   | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | o-xylene                                  | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | Isopropylbenzene (Cumene)                 | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | n-propylbenzene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,3,5-trimethylbenzene                    | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | tert-butylbenzene                         | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | 1,2,4-trimethylbenzene                    | mg/kg | 0.1 | <0.1     | <0.1      | 200          | 0        |
|              |              |             | sec-butylbenzene                          |       | 0.1 | <0.1     |           |              |          |


Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

#### Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR SE249904.018 LB283872.014 0.1 <0.1 <0.1 200 Monocyclic p-isopropyltoluene mg/kg 0 Aromatic n-butylbenzene mg/kg 0.1 < 0.1 < 0.1 200 0 0.1 <0.1 <0.1 200 0 Nitrogenous Acrylonitrile mg/kg Compounds 2-nitropropane 10 <10 <10 200 0 mg/kg Oxvgenated Acetone (2-propanone) 10 <10 <10 200 0 mg/kg Compounds MtBE (Methyl-tert-butyl ether) 0.1 <0.1 <0.1 200 0 mg/kg 200 Vinvl acetate\* 10 <10 <10 0 ma/ka MIBK (4-methyl-2-pentanone) <1 <1 200 0 mg/kg 1 <5 <5 2-hexanone (MBK) 5 200 0 mg/kg Polycyclic Naphthalene (VOC)\* 0.1 <0.1 <0.1 200 0 mg/kg Sulphonated Carbon disulfide 0.5 <0.5 <0.5 200 0 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) 9.2 8.8 50 4 mg/kg d8-toluene (Surrogate) 16 ma/ka 10.1 8.6 50 Bromofluorobenzene (Surrogate) 7.5 9.1 50 19 mg/kg Totals Total Other Chlorinated Hydrocarbons VIC EPA\* 1.8 <1.8 <1.8 200 0 mg/kg Total Chlorinated Hydrocarbons VIC EPA\* 1.8 <1.8 <1.8 200 0 mg/kg Total BTEX\* 0.6 <0.6 <0.6 200 0 mg/kg Total Volatile Chlorinated Hydrocarbons\* 200 mg/kg 3 <3.0 <3.0 0 Total VOC\* 24 <24 <24 200 0 mg/kg Total Xylenes\* 0.3 <0.3 <0.3 200 0 mg/kg Trihalomethan <0.1 <0.1 200 Chloroform (THM) 0.1 0 mg/kg Bromodichloromethane (THM) 0.1 <0.1 < 0.1 200 0 es ma/ka Dibromochloromethane (THM) 0.1 < 0.1 < 0.1 200 0 mg/kg Bromoform (THM) 0.1 <0.1 <0.1 200 0 mg/kg SE249904.022 LB283872.016 Fumigants 2,2-dichloropropane <0.1 <0.1 200 0 mg/kg 0.1 1,2-dichloropropane mg/kg 0.1 <0.1 <0.1 200 0 cis-1,3-dichloropropene 0.1 <0.1 <0.1 200 0 mg/kg <0.1 trans-1.3-dichloropropene mg/kg 0.1 < 0.1 200 0 1,2-dibromoethane (EDB) 0.1 <0.1 <0.1 200 0 mg/kg Halogenated Dichlorodifluoromethane (CFC-12) <1 <1 200 0 1 mg/kg Aliphatics Chloromethane mg/kg 1 <1 <1 200 0 Vinyl chloride (Chloroethene) mg/kg 0.1 <0.1 < 0.1 200 0 Bromomethane <1 <1 200 0 1 mg/kg Chloroethane mg/kg 1 <1 <1 200 0 Trichlorofluoromethane <1 <1 200 0 mg/kg 1 1,1-dichloroethene 0.1 <0.1 <0.1 200 0 mg/kg <5 200 0 Iodomethane ma/ka 5 <5 Dichloromethane (Methylene chloride) mg/kg 0.5 < 0.5 <0.5 200 0 Allyl chloride 0.1 <0.1 <0.1 200 0 mg/kg trans-1,2-dichloroethene mg/kg 0.1 <0.1 <0.1 200 0 1,1-dichloroethane 0.1 <0.1 <0.1 200 0 mg/kg cis-1,2-dichloroethene 0.1 <0.1 <0.1 200 0 mg/kg Bromochloromethane mg/kg 0.1 < 0.1 < 0.1 200 0 1,2-dichloroethane mg/kg 0.1 <0.1 <0.1 200 0 1,1,1-trichloroethane 0.1 <0.1 <0.1 200 0 mg/kg 1,1-dichloropropene mg/kg 0.1 <0.1 <0.1 200 0 0.1 Carbon tetrachloride <0.1 <0.1 200 0 mg/kg Dibromomethane 0.1 <0.1 <0.1 200 0 mg/kg Trichloroethene (Trichloroethylene,TCE) 0.1 <0.1 <0.1 200 0 mg/kg 1,1,2-trichloroethane mg/kg 0.1 < 0.1 < 0.1 200 0 1,3-dichloropropane <0.1 0.1 <0.1 200 0 mg/kg Tetrachloroethene (Perchloroethylene.PCE) mg/kg 0.1 <0.1 < 0.1 200 0 1,1,1,2-tetrachloroethane 0.1 <0.1 <0.1 200 0 mg/kg 1,1,2,2-tetrachloroethane 0.1 <0.1 <0.1 200 0 mg/kg 200 1,2,3-trichloropropane mg/kg 0.1 <0.1 <0.1 0 trans-1,4-dichloro-2-butene <1 <1 200 0 mg/kg 1 1,2-dibromo-3-chloropropane 0.1 <0.1 <0.1 200 0 mg/kg Hexachlorobutadiene mg/kg 0.1 < 0.1 < 0.1 200 0 Halogenated Chlorobenzene 0.1 <0.1 <0.1 200 0 mg/kg Aromatics 0.1 <0.1 <0.1 200 0 Bromobenzene mg/kg 2-chlorotoluene mg/kg 0.1 <0.1 <0.1 200 0



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

#### Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) Original Duplicate Original Duplicate Criteria % RPD % Parameter Units LOR SE249904.022 LB283872.016 200 Halogenated 4-chlorotoluene 0.1 <0.1 <0.1 mg/kg 0 Aromatics 1.3-dichlorobenzene mg/kg 0.1 < 0.1 < 0.1 200 0 0.1 <0.1 <0.1 200 0 1,4-dichlorobenzene mg/kg 1,2-dichlorobenzene 0.1 <0.1 <0.1 200 0 mg/kg 1.2.4-trichlorobenzene 01 <0.1 <0.1 200 0 mg/kg 1,2,3-trichlorobenzene 0.1 <0.1 <0.1 200 0 mg/kg Monocyclic <0.1 <0.1 200 0 Benzene 0.1 ma/ka Aromatic Toluene 0.1 < 0.1 <0.1 200 0 mg/kg 0.1 <0.1 <0.1 200 0 Ethylbenzene mg/kg 0.2 <0.2 <0.2 200 0 m/p-xylene mg/kg Styrene (Vinyl benzene) 0.1 <0.1 <0.1 200 0 mg/kg o-xylene 0.1 <0.1 <0.1 200 0 mg/kg Isopropylbenzene (Cumene) <0.1 < 0.1 200 0 ma/ka 0.1 n-propylbenzene 0.1 < 0.1 <0.1 200 0 mg/kg <0.1 <0.1 200 1,3,5-trimethylbenzene 0.1 0 mg/kg tert-butylbenzene 0.1 <0.1 <0.1 200 0 mg/kg 1,2,4-trimethylbenzene mg/kg 0.1 < 0.1 < 0.1 200 0 0.1 <0.1 <0.1 200 sec-butylbenzene mg/kg 0 p-isopropyltoluene 0.1 <0.1 <0.1 200 0 mg/kg n-butylbenzene 0.1 <0.1 <0.1 200 0 mg/kg Nitrogenous 0.1 <0.1 <0.1 200 0 Acrylonitrile mg/kg Compounds 10 <10 <10 200 0 2-nitropropane ma/ka Oxygenated Acetone (2-propanone) 10 <10 <10 200 0 mg/kg Compounds 200 MtBE (Methyl-tert-butyl ether) 0.1 <0.1 <0.1 0 mg/kg <10 200 0 Vinyl acetate\* mg/kg 10 <10 MIBK (4-methyl-2-pentanone) mg/kg 1 <1 <1 200 0 2-hexanone (MBK) 5 <5 <5 200 0 mg/kg Polycyclic Naphthalene (VOC) 0.1 <0.1 < 0.1 200 0 mg/kg Sulphonated Carbon disulfide 0.5 <0.5 <0.5 200 0 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) 8.5 9.4 50 10 mg/kg d8-toluene (Surrogate) mg/kg 7.8 10.4 50 28 -Bromofluorobenzene (Surrogate) mg/kg 8.7 8.8 50 1 Totals 200 0 Total Other Chlorinated Hydrocarbons VIC EPA\* 1.8 <1.8 <1.8 mg/kg Total Chlorinated Hydrocarbons VIC EPA\* mg/kg 1.8 <1.8 <1.8 200 0 Total BTEX\* 0.6 <0.6 <0.6 200 0 mg/kg Total Volatile Chlorinated Hydrocarbons\* <3.0 200 3 <3.0 0 mg/kg Total VOC\* 24 <24 <24 200 0 ma/ka Total Xylenes\* mg/kg 0.3 <0.3 <0.3 200 0 Trihalomethan <0.1 <0.1 200 Chloroform (THM) 0.1 0 mg/kg es Bromodichloromethane (THM) mg/kg 0.1 <0.1 <0.1 200 0 Dibromochloromethane (THM) 0.1 <0.1 <0.1 200 0 mg/kg Bromoform (THM) mg/kg 0.1 <0.1 <0.1 200 0



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Carbamates in Soil

| Carbamates in Soil |            |                             |       |     |        |          |            |            |  |
|--------------------|------------|-----------------------------|-------|-----|--------|----------|------------|------------|--|
| Sample Number      |            | Parameter                   | Units | LOR | Result | Expected | Criteria % | Recovery % |  |
| LB284020.002       | Carbamates | Carbofuran                  | mg/kg | 0.5 | 1.1    | 1        | 70 - 130   | 105        |  |
|                    | Surrogates | d14-p-terphenyl (Surrogate) | mg/kg | -   | 0.5    | 0.5      | 40 - 130   | 90         |  |

#### Mercury in Soil

| Mercury in Soil | Method: ME-(AU)-[ENV] |       |      |        |          |            |            |  |  |
|-----------------|-----------------------|-------|------|--------|----------|------------|------------|--|--|
| Sample Number   | Parameter             | Units | LOR  | Result | Expected | Criteria % | Recovery % |  |  |
| LB284032.002    | Mercury               | mg/kg | 0.05 | 0.23   | 0.2      | 80 - 120   | 115        |  |  |
| LB284033.002    | Mercury               | mg/kg | 0.05 | 0.19   | 0.2      | 80 - 120   | 95         |  |  |

#### **OC Pesticides in Soil**

| OC Pesticides in So                   | lic        |                                          |                |     |               | I        | Method: ME-(A | U)-[ENV]AN420        |
|---------------------------------------|------------|------------------------------------------|----------------|-----|---------------|----------|---------------|----------------------|
| Sample Number                         |            | Parameter                                | Units          | LOR | Result        | Expected | Criteria %    | Recovery %           |
| LB284019.002                          |            | Delta BHC                                | mg/kg          | 0.1 | 0.2           | 0.2      | 60 - 140      | 90                   |
|                                       |            | Heptachlor                               | mg/kg          | 0.1 | 0.2           | 0.2      | 60 - 140      | 86                   |
|                                       |            | Aldrin                                   | mg/kg          | 0.1 | 0.2           | 0.2      | 60 - 140      | 87                   |
|                                       |            | Dieldrin                                 | mg/kg          | 0.2 | <0.2          | 0.2      | 60 - 140      | 69                   |
|                                       |            | Endrin                                   | mg/kg          | 0.2 | <0.2          | 0.2      | 60 - 140      | 66                   |
|                                       |            | p,p'-DDT                                 | mg/kg          | 0.1 | 0.2           | 0.2      | 60 - 140      | 105                  |
|                                       | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate)  | mg/kg          | -   | 0.13          | 0.15     | 40 - 130      | 86                   |
| OP Pesticides in Sc                   | li         |                                          |                |     |               | I        | Method: ME-(A | U)-[ENV]AN42         |
| Sample Number                         |            | Parameter                                | Units          | LOR | Result        | Expected | Criteria %    | Recovery %           |
| LB284019.002                          |            | Chlorpyrifos (Chlorpyrifos Ethyl)        | mg/kg          | 0.2 | 1.6           | 2        | 60 - 140      | 81                   |
|                                       |            | Diazinon (Dimpylate)                     | mg/kg          | 0.5 | 1.7           | 2        | 60 - 140      | 85                   |
|                                       |            | Dichlorvos                               | mg/kg          | 0.5 | 1.3           | 2        | 60 - 140      | 67                   |
|                                       |            | Ethion                                   | mg/kg          | 0.2 | 1.4           | 2        | 60 - 140      | 69                   |
|                                       | Surrogates | 2-fluorobiphenyl (Surrogate)             | mg/kg          | -   | 0.5           | 0.5      | 40 - 130      | 105                  |
|                                       |            |                                          |                |     |               |          |               |                      |
|                                       |            | d14-p-terphenyl (Surrogate)              | mg/kg          | -   | 0.5           | 0.5      | 40 - 130      | 100                  |
| Synthetic Pyrethroid                  | ds in Soil | d14-p-terphenyl (Surrogate)              | mg/kg          | -   | 0.5           |          |               | 100<br>U)-[ENV]AN420 |
| Synthetic Pyrethroid<br>Sample Number | ds in Soil | d14-p-terphenyl (Surrogate)<br>Parameter | mg/kg<br>Units | LOR | 0.5<br>Result |          |               |                      |

|  |  | Synthetic | Bifenthrin | mg/kg | 0.5 | 0.9 | 1 | 70 - 130 | 90 |
|--|--|-----------|------------|-------|-----|-----|---|----------|----|
|--|--|-----------|------------|-------|-----|-----|---|----------|----|

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

| Sample Number                 | Parameter      | Units | LOR | Result | Expected | Criteria %     | Recovery %   |
|-------------------------------|----------------|-------|-----|--------|----------|----------------|--------------|
| LB284026.002                  | Arsenic, As    | mg/kg | 1   | 350    | 318.22   | 80 - 120       | 109          |
|                               | Cadmium, Cd    | mg/kg | 0.3 | 4.1    | 4.81     | 70 - 130       | 86           |
|                               | Chromium, Cr   | mg/kg | 0.5 | 41     | 38.31    | 80 - 120       | 108          |
|                               | Copper, Cu     | mg/kg | 0.5 | 320    | 290      | 80 - 120       | 109          |
|                               | Nickel, Ni     | mg/kg | 0.5 | 190    | 187      | 80 - 120       | 103          |
|                               | Lead, Pb       | mg/kg | 1   | 93     | 89.9     | 80 - 120       | 103          |
|                               | Zinc, Zn       | mg/kg | 2   | 280    | 273      | 80 - 120       | 102          |
| LB284027.002                  | Arsenic, As    | mg/kg | 1   | 340    | 318.22   | 80 - 120       | 106          |
|                               | Cadmium, Cd    | mg/kg | 0.3 | 4.0    | 4.81     | 70 - 130       | 83           |
|                               | Chromium, Cr   | mg/kg | 0.5 | 40     | 38.31    | 80 - 120       | 105          |
|                               | Copper, Cu     | mg/kg | 0.5 | 310    | 290      | 80 - 120       | 107          |
|                               | Nickel, Ni     | mg/kg | 0.5 | 190    | 187      | 80 - 120       | 100          |
|                               | Lead, Pb       | mg/kg | 1   | 91     | 89.9     | 80 - 120       | 101          |
|                               | Zinc, Zn       | mg/kg | 2   | 280    | 273      | 80 - 120       | 101          |
| Trace Metals (Dissolved) in W | /ater by ICPMS |       |     |        | N        | /lethod: ME-(A | U)-[ENV]AN31 |

|                   |           |       |     |        |          |               | -, [, f       |
|-------------------|-----------|-------|-----|--------|----------|---------------|---------------|
| Sample Number     | Parameter | Units | LOR | Result | Expected | Criteria %    | Recovery %    |
| LB283919.002      | Arsenic   | µg/L  | 1   | 21     | 20       | 80 - 120      | 106           |
|                   | Cadmium   | µg/L  | 0.1 | 21     | 20       | 80 - 120      | 105           |
|                   | Chromium  | µg/L  | 1   | 19     | 20       | 80 - 120      | 97            |
|                   | Copper    | µg/L  | 1   | 19     | 20       | 80 - 120      | 97            |
|                   | Lead      | µg/L  | 1   | 20     | 20       | 80 - 120      | 98            |
|                   | Nickel    | μg/L  | 1   | 21     | 20       | 80 - 120      | 104           |
|                   | Zinc      | µg/L  | 5   | 19     | 20       | 80 - 120      | 97            |
| Triazines in Soil |           |       |     |        | I        | vethod: ME-(A | U)-[ENV]AN420 |

6/7/2023

Method: ME-(AU)-[ENV]AN040/AN320



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Triazines in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sample Number Expected Criteria % Recovery % Parameter Units LOR Result LB284020.002 70 - 130 0.5 Atrazine 3.3 4 82 mg/kg Propazine mg/kg 0.5 3.1 4 70 - 130 77 Terbuthylazine 0.5 3.7 4 70 - 130 94 mg/kg Prometryn mg/kg 0.5 3.1 4 70 - 130 79 Terbutryn mg/kg 0.5 3.2 4 70 - 130 80 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter LOR Result Expected Criteria % Recovery % LB283872.002 Halogenated 1.1-dichloroethene mg/kg 0.1 4.0 5 60 - 140 81 Aliphatics 1,2-dichloroethane mg/kg 0.1 48 5 60 - 140 95 Trichloroethene (Trichloroethylene, TCE) 0.1 60 - 140 102 5.1 5 mg/kg 102 Halogenated Chlorobenzene mg/kg 0.1 5.1 5 60 - 140 Monocyclic Benzene mg/kg 0.1 5.4 5 60 - 140 109 Aromatic 60 - 140 Toluene 0.1 5.7 5 113 mg/kg 107 Ethylbenzene mg/kg 0.1 5.3 5 60 - 140 m/p-xylene mg/kg 0.2 10 10 60 - 140 105 0.1 5.3 5 60 - 140 106 o-xylene mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 12.0 10 70 - 130 120 d8-toluene (Surrogate) mg/kg 11.5 10 70 - 130 115 Bromofluorobenzene (Surrogate) 11.7 70 - 130 117 mg/kg 10 Trihalomethan Chloroform (THM) mg/kg 0.1 5.0 5 60 - 140 100



## **MATRIX SPIKES**

### SE249904 R0

Method: ME-(AU)-[ENV]AN312

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| Mercury (dissolve | Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN |           |       |        |        |          |       |           |
|-------------------|-------------------------------------------------------------------|-----------|-------|--------|--------|----------|-------|-----------|
| QC Sample         | Sample Number                                                     | Parameter | Units | LOR    | Result | Original | Spike | Recovery% |
| SE249903.001      | LB284151.004                                                      | Mercury   | mg/L  | 0.0001 | 0.0018 | <0.0001  | 0.008 | 89        |

#### Mercury in Soil

| QC Sample    | Sample Number | Parameter | Units | LOR  | Result | Original | Spike | Recovery% |
|--------------|---------------|-----------|-------|------|--------|----------|-------|-----------|
| SE249877.012 | LB284032.004  | Mercury   | mg/kg | 0.05 | 0.22   | <0.05    | 0.2   | 106       |
| SE249904.006 | LB284033.004  | Mercury   | mg/kg | 0.05 | 0.22   | <0.05    | 0.2   | 104       |

#### **OC Pesticides in Soil**

| C Pesticides III |               |            |                                                     |                |            |            |              |            | )-[L-144]/-1442     |
|------------------|---------------|------------|-----------------------------------------------------|----------------|------------|------------|--------------|------------|---------------------|
| QC Sample        | Sample Number |            | Parameter                                           | Units          | LOR        | Result     | Original     | Spike      | Recovery            |
| SE249872.001     | LB284019.004  |            | Alpha BHC                                           | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Hexachlorobenzene (HCB)                             | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Beta BHC                                            | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Lindane (gamma BHC)                                 | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Delta BHC                                           | mg/kg          | 0.1        | 0.2        | <0.1         | 0.2        | 100                 |
|                  |               |            | Heptachlor                                          | mg/kg          | 0.1        | 0.2        | <0.1         | 0.2        | 105                 |
|                  |               |            | Aldrin                                              | mg/kg          | 0.1        | 0.2        | <0.1         | 0.2        | 100                 |
|                  |               |            | Isodrin                                             | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Heptachlor epoxide                                  | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Gamma Chlordane                                     | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Alpha Chlordane                                     | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Alpha Endosulfan                                    | mg/kg          | 0.2        | <0.2       | <0.2         | -          | -                   |
|                  |               |            | o,p'-DDE*                                           | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | p,p'-DDE                                            | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | Dieldrin                                            | mg/kg          | 0.2        | <0.2       | <0.2         | 0.2        | 74                  |
|                  |               |            | Endrin                                              | mg/kg          | 0.2        | 0.2        | <0.2         | 0.2        | 104                 |
|                  |               |            | Beta Endosulfan                                     | mg/kg          | 0.2        | <0.2       | <0.2         | _          | _                   |
|                  |               |            | o,p'-DDD*                                           | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | p,p'-DDD                                            | mg/kg          | 0.1        | <0.1       | <0.1         | -          | _                   |
|                  |               |            | Endrin aldehyde                                     | mg/kg          | 0.1        | <0.1       | <0.1         |            |                     |
|                  |               |            | Endosulfan sulphate                                 | mg/kg          | 0.1        | <0.1       | <0.1         | -          | -                   |
|                  |               |            | o,p'-DDT*                                           | mg/kg          | 0.1        | <0.1       | <0.1         |            |                     |
|                  |               |            | p,p'-DDT                                            | mg/kg          | 0.1        | 0.2        | <0.1         | 0.2        | 109                 |
|                  |               |            | Endrin ketone                                       | mg/kg          | 0.1        | <0.1       | <0.1         |            | 103                 |
|                  |               |            | Methoxychlor                                        |                | 0.1        | <0.1       | <0.1         | -          |                     |
|                  |               |            |                                                     | mg/kg          | 0.1        |            |              | -          |                     |
|                  |               |            | Mirex                                               | mg/kg          |            | <0.1       | <0.1         | -          | -                   |
|                  |               |            | trans-Nonachlor                                     | mg/kg          | 0.1        | <0.1       | <0.1         |            | -                   |
|                  |               |            | Total CLP OC Pesticides                             | mg/kg          | 1          | 1          | <1           | -          | -                   |
|                  |               |            | Total OC VIC EPA                                    | mg/kg          | 1          | 1          | <1           | -          | -                   |
|                  |               | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate)             | mg/kg          | -          | 0.11       | 0.11         | -          | 74                  |
| P Pesticides in  | Soll          |            |                                                     |                |            |            | Meth         | od: ME-(AU | )-[ENV]AN42         |
| QC Sample        | Sample Number |            | Parameter                                           | Units          | LOR        | Result     | Original     | Spike      | Recovery            |
| E249872.001      | LB284019.004  |            | Azinphos-methyl (Guthion)                           | mg/kg          | 0.2        | 2.9        | <0.2         | -          | -                   |
|                  |               |            | Bromophos Ethyl                                     | mg/kg          | 0.2        | <0.2       | <0.2         | -          | -                   |
|                  |               |            | Chlorpyrifos (Chlorpyrifos Ethyl)                   | mg/kg          | 0.2        | 2.2        | <0.2         | 2          | 109                 |
|                  |               |            | Diazinon (Dimpylate)                                | mg/kg          | 0.5        | 2.3        | <0.5         | 2          | 112                 |
|                  |               |            | Dichlorvos                                          | mg/kg          | 0.5        | 1.3        | <0.5         | 2          | 64                  |
|                  |               |            | Dimethoate                                          | mg/kg          | 0.5        | <0.5       | <0.5         | -          | -                   |
|                  |               |            | Ethion                                              | mg/kg          | 0.2        | 1.9        | <0.2         | 2          | 93                  |
|                  |               |            | Fenitrothion                                        | mg/kg          | 0.2        | <0.2       | <0.2         | -          | -                   |
|                  |               |            | Malathion                                           |                | 0.2        | <0.2       | <0.2         |            |                     |
|                  |               |            | malaanon                                            | mg/kg          | 0.2        | <0.2       |              | -          | -                   |
|                  |               |            | Methidathion                                        |                |            |            |              |            |                     |
|                  |               |            | Methidathion                                        | mg/kg          |            |            | <0.5         |            |                     |
|                  |               |            | Parathion-ethyl (Parathion)                         | mg/kg          | 0.2        | <0.2       | <0.2         | -          | -                   |
|                  |               |            | Parathion-ethyl (Parathion)<br>Total OP Pesticides* | mg/kg<br>mg/kg | 0.2<br>1.7 | <0.2<br>10 | <0.2<br><1.7 |            | -                   |
|                  |               | Surrogates | Parathion-ethyl (Parathion)                         | mg/kg          | 0.2        | <0.2       | <0.2         | -          | -<br>-<br>101<br>98 |

QC Sample Sample Number Parameter

Units LOR



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| Total Recoverable | e Elements in Soil/Waste Solids |              |       | Method: ME | -(AU)-[ENV | AN040/AN320 |             |               |
|-------------------|---------------------------------|--------------|-------|------------|------------|-------------|-------------|---------------|
| QC Sample         | Sample Number                   | Parameter    | Units | LOR        | Result     | Original    | Spike       | Recovery%     |
| SE249877.012      | LB284026.004                    | Arsenic, As  | mg/kg | 1          | 50         | 4           | 50          | 91            |
|                   |                                 | Cadmium, Cd  | mg/kg | 0.3        | 40         | <0.3        | 50          | 81            |
|                   |                                 | Chromium, Cr | mg/kg | 0.5        | 50         | 7.3         | 50          | 86            |
|                   |                                 | Copper, Cu   | mg/kg | 0.5        | 58         | 13          | 50          | 89            |
|                   |                                 | Nickel, Ni   | mg/kg | 0.5        | 48         | 5.5         | 50          | 85            |
|                   |                                 | Lead, Pb     | mg/kg | 1          | 54         | 10          | 50          | 87            |
|                   |                                 | Zinc, Zn     | mg/kg | 2          | 82         | 37          | 50          | 90            |
| SE249904.006      | LB284027.004                    | Arsenic, As  | mg/kg | 1          | 51         | 2           | 50          | 98            |
|                   |                                 | Cadmium, Cd  | mg/kg | 0.3        | 45         | <0.3        | 50          | 90            |
|                   |                                 | Chromium, Cr | mg/kg | 0.5        | 59         | 7.5         | 50          | 103           |
|                   |                                 | Copper, Cu   | mg/kg | 0.5        | 53         | 1.3         | 50          | 104           |
|                   |                                 | Nickel, Ni   | mg/kg | 0.5        | 52         | 1.0         | 50          | 102           |
|                   |                                 | Lead, Pb     | mg/kg | 1          | 56         | 8           | 50          | 96            |
|                   |                                 | Zinc, Zn     | mg/kg | 2          | 56         | 6           | 50          | 101           |
| Trace Metals (Dis | solved) in Water by ICPMS       |              |       |            |            | Mett        | nod: ME-(AL | J)-[ENV]AN318 |
| QC Sample         | Sample Number                   | Parameter    | Units | LOR        | Result     | Original    | Spike       | Recovery%     |
| SE249888.001      | LB283919.004                    | Lead         | µg/L  | 1          | 21         | <1          | 20          | 104           |

#### VOC's in Soil

### Method: ME-(AU)-[ENV]AN433

| QC Sample     | Sample Number |             | Parameter                                 | Units | LOR | Result | Original | Spike | Recovery |
|---------------|---------------|-------------|-------------------------------------------|-------|-----|--------|----------|-------|----------|
| SE249750A.001 | LB283872.004  | Fumigants   | 2,2-dichloropropane                       | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,2-dichloropropane                       | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | cis-1,3-dichloropropene                   | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | trans-1,3-dichloropropene                 | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,2-dibromoethane (EDB)                   | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               | Halogenated | Dichlorodifluoromethane (CFC-12)          | mg/kg | 1   | <1     | <1       | -     | -        |
|               |               | Aliphatics  | Chloromethane                             | mg/kg | 1   | <1     | <1       | -     | -        |
|               |               |             | Vinyl chloride (Chloroethene)             | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | Bromomethane                              | mg/kg | 1   | <1     | <1       | -     | -        |
|               |               |             | Chloroethane                              | mg/kg | 1   | <1     | <1       | -     | -        |
|               |               |             | Trichlorofluoromethane                    | mg/kg | 1   | <1     | <1       | -     | -        |
|               |               |             | 1,1-dichloroethene                        | mg/kg | 0.1 | 4.0    | <0.1     | 5     | 79       |
|               |               |             | lodomethane                               | mg/kg | 5   | <5     | <5       | -     | -        |
|               |               |             | Dichloromethane (Methylene chloride)      | mg/kg | 0.5 | <0.5   | <0.5     | -     | -        |
|               |               |             | Allyl chloride                            | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | trans-1,2-dichloroethene                  | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,1-dichloroethane                        | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | cis-1,2-dichloroethene                    | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | Bromochloromethane                        | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,2-dichloroethane                        | mg/kg | 0.1 | 4.6    | <0.1     | 5     | 92       |
|               |               |             | 1,1,1-trichloroethane                     | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,1-dichloropropene                       | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | Carbon tetrachloride                      | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | Dibromomethane                            | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | Trichloroethene (Trichloroethylene, TCE)  | mg/kg | 0.1 | 5.2    | <0.1     | 5     | 105      |
|               |               |             | 1,1,2-trichloroethane                     | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,3-dichloropropane                       | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | Tetrachloroethene (Perchloroethylene,PCE) | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,1,1,2-tetrachloroethane                 | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,1,2,2-tetrachloroethane                 | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 1,2,3-trichloropropane                    | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | trans-1,4-dichloro-2-butene               | mg/kg | 1   | <1     | <1       | -     | -        |
|               |               |             | 1,2-dibromo-3-chloropropane               | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | Hexachlorobutadiene                       | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               | Halogenated | Chlorobenzene                             | mg/kg | 0.1 | 4.8    | <0.1     | 5     | 95       |
|               |               | Aromatics   | Bromobenzene                              | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 2-chlorotoluene                           | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|               |               |             | 4-chlorotoluene                           | mg/kg | 0.1 | <0.1   | <0.1     |       | -        |



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| C Sample     | Sample Number |              | Parameter                                     | Units | LOR | Result | Original | Spike | Recover   |
|--------------|---------------|--------------|-----------------------------------------------|-------|-----|--------|----------|-------|-----------|
| E249750A.001 | LB283872.004  | Halogenated  | 1,3-dichlorobenzene                           | mg/kg | 0.1 | <0.1   | <0.1     | -     | - Necover |
|              |               | Aromatics    | 1,4-dichlorobenzene                           | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | 1,2-dichlorobenzene                           | mg/kg | 0.1 | <0.1   | <0.1     | _     | -         |
|              |               |              | 1,2,4-trichlorobenzene                        | mg/kg | 0.1 | <0.1   | <0.1     | _     |           |
|              |               |              | 1,2,3-trichlorobenzene                        | mg/kg | 0.1 | <0.1   | <0.1     | _     | _         |
|              |               | Monocyclic   | Benzene                                       | mg/kg | 0.1 | 5.1    | <0.1     | 5     | 101       |
|              |               | Aromatic     | Toluene                                       | mg/kg | 0.1 | 5.2    | <0.1     | 5     | 101       |
|              |               | A longue     | Ethylbenzene                                  | mg/kg | 0.1 | 4.7    | <0.1     | 5     | 95        |
|              |               |              | m/p-xylene                                    | mg/kg | 0.1 | 9.2    | <0.1     | 10    | 93        |
|              |               |              | Styrene (Vinyl benzene)                       |       | 0.2 | <0.1   | <0.2     | -     | - 52      |
|              |               |              |                                               | mg/kg |     |        |          |       |           |
|              |               |              | o-xylene                                      | mg/kg | 0.1 | 4.7    | <0.1     | 5     | 93        |
|              |               |              | Isopropylbenzene (Cumene)                     | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | n-propylbenzene                               | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | 1,3,5-trimethylbenzene                        | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | tert-butylbenzene                             | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | 1,2,4-trimethylbenzene                        | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | sec-butylbenzene                              | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | p-isopropyltoluene                            | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | n-butylbenzene                                | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               | Nitrogenous  | Acrylonitrile                                 | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               | Compounds    | 2-nitropropane                                | mg/kg | 10  | <10    | <10      | -     | -         |
|              |               | Oxygenated   | Acetone (2-propanone)                         | mg/kg | 10  | <10    | <10      | -     | -         |
|              |               | Compounds    | MtBE (Methyl-tert-butyl ether)                | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               |              | Vinyl acetate*                                | mg/kg | 10  | <10    | <10      | -     | -         |
|              |               |              | MIBK (4-methyl-2-pentanone)                   | mg/kg | 1   | <1     | <1       | -     | -         |
|              |               |              | 2-hexanone (MBK)                              | mg/kg | 5   | <5     | <5       | -     | -         |
|              |               | Polycyclic   | Naphthalene (VOC)*                            | mg/kg | 0.1 | <0.1   | <0.1     | -     | -         |
|              |               | Sulphonated  | Carbon disulfide                              | mg/kg | 0.5 | <0.5   | <0.5     | -     | -         |
|              |               | Surrogates   | d4-1,2-dichloroethane (Surrogate)             | mg/kg | -   | 11.3   | 9.8      | 10    | 113       |
|              |               |              | d8-toluene (Surrogate)                        | mg/kg | -   | 9.9    | 9.2      | 10    | 99        |
|              |               |              | Bromofluorobenzene (Surrogate)                | mg/kg | -   | 10.1   | 9.5      | 10    | 101       |
|              |               | Totals       | Total Other Chlorinated Hydrocarbons VIC EPA* | mg/kg | 1.8 | 24     | <1.8     | -     | -         |
|              |               |              | Total Chlorinated Hydrocarbons VIC EPA*       | mg/kg | 1.8 | 24     | <1.8     | -     | -         |
|              |               |              | Total BTEX*                                   | mg/kg | 0.6 | 29     | <0.6     | -     | -         |
|              |               |              | Total Volatile Chlorinated Hydrocarbons*      | mg/kg | 3   | <3.0   | <3.0     | -     |           |
|              |               |              | Total VOC*                                    | mg/kg | 24  | 53     | <24      | -     | -         |
|              |               |              | Total Xylenes*                                | mg/kg | 0.3 | 14     | <0.3     | -     | -         |
|              |               | Trihalometha | Chloroform (THM)                              | mg/kg | 0.1 | 4.9    | <0.1     | 5     | 97        |
|              |               | nes          | Bromodichloromethane (THM)                    | mg/kg | 0.1 | <0.1   | <0.1     | -     |           |
|              |               |              | Dibromochloromethane (THM)                    | mg/kg | 0.1 | <0.1   | <0.1     |       |           |
|              |               |              | Bromoform (THM)                               | mg/kg | 0.1 | <0.1   | <0.1     | -     |           |



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



#### Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: <a href="https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf">https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf</a>

- \* NATA accreditation does not cover the performance of this service.
- \*\* Indicative data, theoretical holding time exceeded.
- \*\*\* Indicates that both \* and \*\* apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- <sup>(7)</sup> LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- <sup>®</sup> LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



Appendix F. Laboratory reports

02 6161 1762

contact@murrang.com.au

WWW.MUTTANg.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page G1





| CLIENT DETAILS | Julia Jasonsmith<br>MURRANG EARTH SCIENCES PTY LTD | LABORATORY DETAIL<br>Manager<br>Laboratory | Huong Crawford<br>SGS Alexandria Environmental |
|----------------|----------------------------------------------------|--------------------------------------------|------------------------------------------------|
| Address        | GPO BOX 2310<br>CANBERRA ACT 2601                  | Address                                    | Unit 16, 33 Maddox St<br>Alexandria NSW 2015   |
| Telephone      | 0406 621 214                                       | Telephone                                  | +61 2 8594 0400                                |
| Facsimile      | (Not specified)                                    | Facsimile                                  | +61 2 8594 0499                                |
| Email          | julia.jasonsmith@murrang.com.au                    | Email                                      | au.environmental.sydney@sgs.com                |
| Project        | MES2167                                            | SGS Reference                              | <b>SE249904 R0</b>                             |
| Order Number   | MES2167                                            | Date Received                              | 28 Jun 2023                                    |
| Samples        | 24                                                 | Date Reported                              | 06 Jul 2023                                    |

COMMENTS \_

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Phenoxy Acid Herbicides subcontracted to SGS Melbourne, 10/585 Blackburn Road, Notting Hill, VIC, NATA Accreditation Numbe. 2562/14420. Report No. ME335307.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Bennet LO Senior Chemist

Dong LIANG Metals/Inorganics Team Leader

Kamrul AHSAN Senior Chemist

Akm/n/

Ly Kim HA Organic Section Head



Le.

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

0400 www.sgs.com.au 0499



### SE249904 R0

|                                                            |       | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.001<br>Soil<br>27 Jun 2023<br>Sample 1<br>0.1-0.25 | SE249904.002<br>Soil<br>27 Jun 2023<br>Sample 1 0.3-0.4 | SE249904.003<br>Soil<br>27 Jun 2023<br>Sample 2<br>0.1-0.25 | SE249904.004<br>Soil<br>27 Jun 2023<br>Sample 2 0.1-0.2 |
|------------------------------------------------------------|-------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Parameter                                                  | Units | LOR                                                          |                                                             |                                                         |                                                             |                                                         |
| VOC's in Soil Method: AN433 Tested: 28/6/2023<br>Fumigants |       |                                                              |                                                             |                                                         |                                                             |                                                         |
| 2,2-dichloropropane                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2-dichloropropane                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| cis-1,3-dichloropropene                                    | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| trans-1,3-dichloropropene                                  | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2-dibromoethane (EDB)                                    | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Halogenated Aliphatics                                     | ·     |                                                              |                                                             |                                                         |                                                             |                                                         |
| Dichlorodifluoromethane (CFC-12)                           | mg/kg | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| Chloromethane                                              | mg/kg | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| Vinyl chloride (Chloroethene)                              | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Bromomethane                                               | mg/kg | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| Chloroethane                                               | mg/kg | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| Trichlorofluoromethane                                     | mg/kg | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| 1,1-dichloroethene                                         | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| lodomethane                                                | mg/kg | 5                                                            | <5                                                          | -                                                       | -                                                           | -                                                       |
| Dichloromethane (Methylene chloride)                       | mg/kg | 0.5                                                          | <0.5                                                        | -                                                       | -                                                           | -                                                       |
| Allyl chloride                                             | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| trans-1,2-dichloroethene                                   | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,1-dichloroethane                                         | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| cis-1,2-dichloroethene                                     | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Bromochloromethane                                         | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2-dichloroethane                                         | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,1,1-trichloroethane                                      | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,1-dichloropropene                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Carbon tetrachloride                                       | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Dibromomethane                                             | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Trichloroethene (Trichloroethylene,TCE)                    | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,1,2-trichloroethane                                      | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,3-dichloropropane                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Tetrachloroethene (Perchloroethylene,PCE)                  | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,1,1,2-tetrachloroethane                                  | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,1,2,2-tetrachloroethane                                  | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2,3-trichloropropane                                     | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| trans-1,4-dichloro-2-butene                                | mg/kg | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| 1,2-dibromo-3-chloropropane                                | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Hexachlorobutadiene                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Halogenated Aromatics                                      |       |                                                              |                                                             |                                                         |                                                             |                                                         |
| Chlorobenzene                                              | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Bromobenzene                                               | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 2-chlorotoluene                                            | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 4-chlorotoluene                                            | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,3-dichlorobenzene                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,4-dichlorobenzene                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2-dichlorobenzene                                        | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2,4-trichlorobenzene                                     | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2,3-trichlorobenzene                                     | mg/kg | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Monocyclic Aromatic Hydrocarbons                           |       |                                                              |                                                             |                                                         |                                                             |                                                         |

Monocyclic Aromatic Hydrocarbons

| Benzene                   | mg/kg | 0.1 | <0.1 | - | - | - |
|---------------------------|-------|-----|------|---|---|---|
| Toluene                   | mg/kg | 0.1 | <0.1 | - | - | - |
| Ethylbenzene              | mg/kg | 0.1 | <0.1 | - | - | - |
| m/p-xylene                | mg/kg | 0.2 | <0.2 | - | - | - |
| Styrene (Vinyl benzene)   | mg/kg | 0.1 | <0.1 | - | - | - |
| o-xylene                  | mg/kg | 0.1 | <0.1 | - | - | - |
| Isopropylbenzene (Cumene) | mg/kg | 0.1 | <0.1 | - | - | - |
| n-propylbenzene           | mg/kg | 0.1 | <0.1 | - | - | - |
| 1,3,5-trimethylbenzene    | mg/kg | 0.1 | <0.1 | - | - | - |



## SE249904 R0

|                                               |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.001<br>Soil<br>27 Jun 2023<br>Sample 1<br>0.1-0.25 | SE249904.002<br>Soil<br>27 Jun 2023<br>Sample 1 0.3-0.4 | SE249904.003<br>Soil<br>27 Jun 2023<br>Sample 2<br>0.1-0.25 | SE249904.004<br>Soil<br>27 Jun 2023<br>Sample 2 0.1-0.2 |
|-----------------------------------------------|-------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Parameter                                     | Units       | LOR                                                          |                                                             |                                                         |                                                             |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023 | (continued) |                                                              |                                                             |                                                         |                                                             |                                                         |
| tert-butylbenzene                             | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 1,2,4-trimethylbenzene                        | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| sec-butylbenzene                              | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| p-isopropyltoluene                            | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| n-butylbenzene                                | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Nitrogenous Compounds                         |             |                                                              |                                                             |                                                         |                                                             |                                                         |
| Acrylonitrile                                 | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| 2-nitropropane                                | mg/kg       | 10                                                           | <10                                                         | -                                                       | -                                                           | -                                                       |
| Oxygenated Compounds                          |             | I                                                            |                                                             |                                                         |                                                             |                                                         |
| Acetone (2-propanone)                         | mg/kg       | 10                                                           | <10                                                         | -                                                       | -                                                           | -                                                       |
| MtBE (Methyl-tert-butyl ether)                | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Vinyl acetate*                                | mg/kg       | 10                                                           | <10                                                         | -                                                       | -                                                           | -                                                       |
| MIBK (4-methyl-2-pentanone)                   | mg/kg       | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| 2-hexanone (MBK)                              | mg/kg       | 5                                                            | <5                                                          | -                                                       | -                                                           | -                                                       |
| Polycyclic VOCs                               |             |                                                              |                                                             |                                                         |                                                             |                                                         |
| Naphthalene (VOC)*                            | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Sulphonated Compounds                         |             |                                                              |                                                             |                                                         |                                                             |                                                         |
| Carbon disulfide                              | mg/kg       | 0.5                                                          | <0.5                                                        | -                                                       | -                                                           | -                                                       |
| Surrogates                                    |             |                                                              |                                                             |                                                         |                                                             |                                                         |
| d4-1,2-dichloroethane (Surrogate)             | %           | -                                                            | 95                                                          | -                                                       | -                                                           | -                                                       |
| d8-toluene (Surrogate)                        | %           | -                                                            | 90                                                          | -                                                       | -                                                           | -                                                       |
| Bromofluorobenzene (Surrogate)<br>Totals      | %           | -                                                            | 96                                                          | -                                                       | -                                                           | -                                                       |
|                                               |             |                                                              |                                                             |                                                         |                                                             |                                                         |
| Total Other Chlorinated Hydrocarbons VIC EPA* | mg/kg       | 1.8                                                          | <1.8                                                        | -                                                       | -                                                           | -                                                       |
| Total Chlorinated Hydrocarbons VIC EPA*       | mg/kg       | 1.8                                                          | <1.8                                                        | -                                                       | -                                                           | -                                                       |
| Total BTEX*                                   | mg/kg       | 0.6                                                          | <0.6                                                        | -                                                       | -                                                           | -                                                       |
| Total Volatile Chlorinated Hydrocarbons*      | mg/kg       | 3                                                            | <3.0                                                        | -                                                       | -                                                           | -                                                       |
| Total VOC*                                    | mg/kg       | 24                                                           | <24                                                         | -                                                       | -                                                           | -                                                       |
| Total Xylenes*                                | mg/kg       | 0.3                                                          | <0.3                                                        | -                                                       | -                                                           | -                                                       |



### SE249904 R0

|                                                  |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.001<br>Soil<br>27 Jun 2023<br>Sample 1<br>0.1-0.25 | SE249904.002<br>Soil<br>27 Jun 2023<br>Sample 1 0.3-0.4 | SE249904.003<br>Soil<br>27 Jun 2023<br>Sample 2<br>0.1-0.25 | SE249904.004<br>Soil<br>27 Jun 2023<br>Sample 2 0.1-0.2 |
|--------------------------------------------------|-------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Parameter                                        | Units       | LOR                                                          |                                                             |                                                         |                                                             |                                                         |
| VOC's in Soil Method: AN433 Tested: 28/6/2023    | (continued) |                                                              |                                                             |                                                         |                                                             |                                                         |
| Trihalomethanes                                  |             |                                                              |                                                             |                                                         |                                                             |                                                         |
| Chloroform (THM)                                 | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Bromodichloromethane (THM)                       | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Dibromochloromethane (THM)                       | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Bromoform (THM)                                  | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| OC Pesticides in Soil Method: AN420 Tested: 29/0 | 6/2023      |                                                              |                                                             |                                                         |                                                             |                                                         |
| Alpha BHC                                        | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Hexachlorobenzene (HCB)                          | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Beta BHC                                         | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Lindane (gamma BHC)                              | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Delta BHC                                        | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Heptachlor                                       | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Aldrin                                           | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Isodrin                                          | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Heptachlor epoxide                               | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Gamma Chlordane                                  | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Alpha Chlordane                                  | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Alpha Endosulfan                                 | mg/kg       | 0.2                                                          | <0.2                                                        | -                                                       | -                                                           | -                                                       |
| o,p'-DDE*                                        | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| p,p'-DDE                                         | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Dieldrin                                         | mg/kg       | 0.2                                                          | <0.2                                                        | -                                                       | -                                                           | -                                                       |
| Endrin                                           | mg/kg       | 0.2                                                          | <0.2                                                        | -                                                       | -                                                           | -                                                       |
| Beta Endosulfan                                  | mg/kg       | 0.2                                                          | <0.2                                                        | -                                                       | -                                                           | -                                                       |
| o,p'-DDD*                                        | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| p,p'-DDD                                         | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Endrin aldehyde                                  | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Endosulfan sulphate                              | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| o,p'-DDT*                                        | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| p,p'-DDT                                         | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Endrin ketone                                    | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Methoxychlor                                     | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Mirex                                            | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| trans-Nonachlor                                  | mg/kg       | 0.1                                                          | <0.1                                                        | -                                                       | -                                                           | -                                                       |
| Total CLP OC Pesticides                          | mg/kg       | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| Total OC VIC EPA                                 | mg/kg       | 1                                                            | <1                                                          | -                                                       | -                                                           | -                                                       |
| Surrogates                                       |             |                                                              |                                                             |                                                         |                                                             |                                                         |
| Tetrachloro-m-xylene (TCMX) (Surrogate)          | %           | -                                                            | 74                                                          | -                                                       | -                                                           | -                                                       |
|                                                  | 1           | 1                                                            |                                                             |                                                         |                                                             |                                                         |

#### OP Pesticides in Soil Method: AN420 Tested: 29/6/2023

| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2 | - | - | - |
|-----------------------------------|-------|-----|------|---|---|---|
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2 | - | - | - |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2 | - | - | - |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5 | - | - | - |
| Dichlorvos                        | mg/kg | 0.5 | <0.5 | - | - | - |
| Dimethoate                        | mg/kg | 0.5 | <0.5 | - | - | - |
| Ethion                            | mg/kg | 0.2 | <0.2 | - | - | - |
| Fenitrothion                      | mg/kg | 0.2 | <0.2 | - | - | - |
| Malathion                         | mg/kg | 0.2 | <0.2 | - | - | - |
| Methidathion                      | mg/kg | 0.5 | <0.5 | - | - | - |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2 | - | - | - |
| Total OP Pesticides*              | mg/kg | 1.7 | <1.7 | - | - | - |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | 102 | - | - | - |
|------------------------------|---|---|-----|---|---|---|
| d14-p-terphenyl (Surrogate)  | % | - | 98  | - | - | - |



### SE249904 R0

|                                                                  |              | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.001<br>Soil<br>27 Jun 2023<br>Sample 1<br>0.1-0.25 | SE249904.002<br>Soil<br>27 Jun 2023<br>Sample 1 0.3-0.4 | SE249904.003<br>Soil<br>27 Jun 2023<br>Sample 2<br>0.1-0.25 | SE249904.004<br>Soil<br>27 Jun 2023<br>Sample 2 0.1-0.2 |
|------------------------------------------------------------------|--------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Parameter                                                        | Units        | LOR                                                          |                                                             |                                                         |                                                             |                                                         |
| Triazines in Soil Method: AN420 Tested: 29/6/2023                |              |                                                              |                                                             |                                                         |                                                             |                                                         |
| Simazine                                                         | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Atrazine                                                         | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Propazine                                                        | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Terbuthylazine                                                   | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Metribuzin                                                       | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Prometryn                                                        | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Terbutryn                                                        | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Cyanazine                                                        | mg/kg        | 0.5                                                          | <0.5                                                        | -                                                       | <0.5                                                        | -                                                       |
| Hexazinone                                                       | mg/kg        | 1                                                            | <1                                                          | -                                                       | <1                                                          | -                                                       |
| Surrogates                                                       |              |                                                              |                                                             |                                                         |                                                             |                                                         |
| d14-p-terphenyl (Surrogate)                                      | %            | -                                                            | 94                                                          | -                                                       | 94                                                          | -                                                       |
| Synthetic Pyrethroids in Soil Method: AN420 Tested<br>Surrogates | 1: 29/6/2023 |                                                              |                                                             |                                                         |                                                             |                                                         |
| d14-p-terphenyl (Surrogate)                                      | %            | -                                                            | 96                                                          | -                                                       | 94                                                          | -                                                       |
| Synthetic Pyrethroids                                            |              | · ·                                                          |                                                             |                                                         |                                                             |                                                         |

Synthetic Pyrethroids

| Bifenthrin       | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
|------------------|-------|-----|------|---|------|---|
| cis-Permethrin   | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| trans-Permethrin | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Cyfluthrin       | mg/kg | 1   | <1   | - | <1   | - |
| Cypermethrin     | mg/kg | 1   | <1   | - | <1   | - |
| Esfenvalerate    | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Deltamethrin     | mg/kg | 0.5 | <0.5 | - | <0.5 | - |

### Carbamates in Soil Method: AN420 Tested: 29/6/2023

| 0      |       |  |
|--------|-------|--|
| Carbar | nates |  |

| Carbofuran                  | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
|-----------------------------|-------|-----|------|---|------|---|
| Carbaryl                    | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Surrogates                  |       |     |      |   |      |   |
| d14-p-terphenyl (Surrogate) | %     | -   | 96   | - | 94   | - |



## SE249904 R0

| Parameter                                             | Units | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name<br>LOR | Soil<br>27 Jun 2023 | SE249904.002<br>Soil<br>27 Jun 2023<br>Sample 1 0.3-0.4 | SE249904.003<br>Soil<br>27 Jun 2023<br>Sample 2<br>0.1-0.25 | SE249904.004<br>Soil<br>27 Jun 2023<br>Sample 2 0.1-0.2 |
|-------------------------------------------------------|-------|---------------------------------------------------------------------|---------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. |       |                                                                     | ed: 6/7/2023        |                                                         |                                                             |                                                         |
| Bromoxynil*                                           | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Clopyralid*                                           | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| 2,4-DB*                                               | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 2,6-D*                                                | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Dicamba*                                              | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| Dichloroprop / Dichlorprop-P*                         | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| Dinoseb*                                              | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Fluroxypyr*                                           | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| loxynil*                                              | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| MCPA*                                                 | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| MCPB*                                                 | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| mecoprop*                                             | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| Picloram*                                             | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| 2,4,5-T*                                              | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| 2,4,5-TP*                                             | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Triclopyr*                                            | mg/kg | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 29/6/2023

| Arsenic, As  | mg/kg | 1   | 1    | <1   | 9    | 7    |
|--------------|-------|-----|------|------|------|------|
| Cadmium, Cd  | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
| Chromium, Cr | mg/kg | 0.5 | 3.7  | 5.2  | 21   | 14   |
| Copper, Cu   | mg/kg | 0.5 | 4.0  | 0.9  | 4.5  | 5.9  |
| Nickel, Ni   | mg/kg | 0.5 | 0.6  | 0.5  | 8.6  | 4.7  |
| Lead, Pb     | mg/kg | 1   | 10   | 5    | 15   | 16   |
| Zinc, Zn     | mg/kg | 2   | 17   | 3    | 16   | 22   |

### Mercury in Soil Method: AN312 Tested: 29/6/2023

| Mercury | mg/kg | 0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
|---------|-------|------|-------|-------|-------|-------|
|         |       |      |       |       |       |       |

#### Moisture Content Method: AN002 Tested: 30/6/2023

| % Moisture | %w/w | 1 | 16.1 | 8.9 | 27.1 | 22.4 |
|------------|------|---|------|-----|------|------|
|            |      |   |      |     |      |      |

#### Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 29/6/2023

| Arsenic  | μg/L | 1   | - | - | - | - |
|----------|------|-----|---|---|---|---|
| Cadmium  | µg/L | 0.1 | - | - | - | - |
| Chromium | µg/L | 1   | - | - | - | - |
| Copper   | µg/L | 1   | - | - | - | - |
| Lead     | µg/L | 1   | - | - | - | - |
| Nickel   | µg/L | 1   | - | - | - | - |
| Zinc     | µg/L | 5   | - | - | - | - |

#### Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 4/7/2023

| Mercury ma/L 0.0001          |         |      |        |   |   |   |   |
|------------------------------|---------|------|--------|---|---|---|---|
| <b>5 1 1 1 1 1 1 1 1 1 1</b> | Mercury | mg/L | 0.0001 | - | - | - | - |



### SE249904 R0

|                                                               |                | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>27 Jun 2023 | SE249904.006<br>Soil<br>27 Jun 2023<br>Sample 3 0.2-0.3 | SE249904.007<br>Soil<br>27 Jun 2023<br>Sample 4<br>0.1-0.15 | SE249904.008<br>Soil<br>27 Jun 2023<br>Sample 4 0.2-0.3 |
|---------------------------------------------------------------|----------------|--------------------------------------------------------------|---------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Parameter                                                     | Units          | LOR                                                          |                     |                                                         |                                                             |                                                         |
| VOC's in Soil Method: AN433 Tested: 28/6/2023<br>Fumigants    |                |                                                              |                     |                                                         |                                                             |                                                         |
|                                                               |                | 0.1                                                          | <0.1                |                                                         |                                                             |                                                         |
| 2,2-dichloropropane<br>1,2-dichloropropane                    | mg/kg<br>mg/kg | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| cis-1,3-dichloropropene                                       | mg/kg          | 0.1                                                          | <0.1                |                                                         |                                                             |                                                         |
| trans-1,3-dichloropropene                                     | mg/kg          | 0.1                                                          | <0.1                | _                                                       | _                                                           | _                                                       |
| 1,2-dibromoethane (EDB)                                       | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
|                                                               |                |                                                              |                     |                                                         |                                                             |                                                         |
| Halogenated Aliphatics                                        |                |                                                              |                     |                                                         |                                                             |                                                         |
| Dichlorodifluoromethane (CFC-12)                              | mg/kg          | 1                                                            | <1                  | -                                                       | -                                                           | -                                                       |
| Chloromethane                                                 | mg/kg          | 1                                                            | <1                  | -                                                       | -                                                           | -                                                       |
| Vinyl chloride (Chloroethene)                                 | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Bromomethane                                                  | mg/kg          | 1                                                            | <1                  | -                                                       | -                                                           | -                                                       |
| Chloroethane                                                  | mg/kg          | 1                                                            | <1                  | -                                                       | -                                                           | -                                                       |
| Trichlorofluoromethane                                        | mg/kg          | 1                                                            | <1                  | -                                                       | -                                                           | -                                                       |
| 1,1-dichloroethene                                            | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| lodomethane                                                   | mg/kg          | 5                                                            | <5                  | -                                                       | -                                                           | -                                                       |
| Dichloromethane (Methylene chloride)                          | mg/kg          | 0.5                                                          | <0.5                | -                                                       | -                                                           | -                                                       |
| Allyl chloride                                                | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| trans-1,2-dichloroethene                                      | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,1-dichloroethane                                            | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| cis-1,2-dichloroethene                                        | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Bromochloromethane                                            | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,2-dichloroethane                                            | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,1,1-trichloroethane                                         | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,1-dichloropropene                                           | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Carbon tetrachloride                                          | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Dibromomethane                                                | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Trichloroethene (Trichloroethylene,TCE)                       | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,1,2-trichloroethane                                         | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,3-dichloropropane Tetrachloroethene (Perchloroethylene,PCE) | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,1,1,2-tetrachloroethane                                     | mg/kg<br>mg/kg | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,1,2,2-tetrachloroethane                                     | mg/kg          | 0.1                                                          | <0.1                | _                                                       |                                                             | _                                                       |
| 1,2,3-trichloropropane                                        | mg/kg          | 0.1                                                          | <0.1                | _                                                       | _                                                           | _                                                       |
| trans-1,4-dichloro-2-butene                                   |                | 1                                                            | <1                  |                                                         |                                                             | _                                                       |
| 1,2-dibromo-3-chloropropane                                   | mg/kg          | 0.1                                                          | <0.1                | _                                                       | _                                                           | _                                                       |
| Hexachlorobutadiene                                           | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Halogenated Aromatics                                         |                | I                                                            |                     | 1                                                       | 1                                                           | 1]                                                      |
| -                                                             |                |                                                              | -0.1                |                                                         |                                                             | ]                                                       |
| Chlorobenzene Bromobenzene                                    | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 2-chlorotoluene                                               | mg/kg<br>mg/kg | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 4-chlorotoluene                                               |                | 0.1                                                          | <0.1                | -                                                       | -                                                           | _                                                       |
| 1,3-dichlorobenzene                                           | mg/kg<br>mg/kg | 0.1                                                          | <0.1                | -                                                       | -                                                           | _                                                       |
| 1,4-dichlorobenzene                                           | mg/kg          | 0.1                                                          | <0.1                | _                                                       | -                                                           | _                                                       |
| 1,4-dichlorobenzene                                           | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | _                                                       |
| 1,2,4-trichlorobenzene                                        | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,2,3-trichlorobenzene                                        | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| · · · · · · · ·                                               |                |                                                              |                     |                                                         | I                                                           | I]                                                      |
| Monocyclic Aromatic Hydrocarbons                              | 1              |                                                              |                     |                                                         |                                                             | 1                                                       |
| Benzene                                                       | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Toluene                                                       | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Ethylbenzene                                                  | mg/kg          | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |

| mg/kg | 0.1                                                | <0.1                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
|-------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| mg/kg | 0.1                                                | <0.1                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
| mg/kg | 0.2                                                | <0.2                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
| mg/kg | 0.1                                                | <0.1                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
| mg/kg | 0.1                                                | <0.1                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
| mg/kg | 0.1                                                | <0.1                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
| mg/kg | 0.1                                                | <0.1                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
| mg/kg | 0.1                                                | <0.1                                                                                                                                                                                      | -                                                                       | -                                                                                 | -                                                                                           |
|       | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | mg/kg         0.1           mg/kg         0.2           mg/kg         0.1           mg/kg         0.1           mg/kg         0.1           mg/kg         0.1           mg/kg         0.1 | mg/kg         0.1         <0.1           mg/kg         0.2         <0.2 | mg/kg         0.1         <0.1         -           mg/kg         0.2         <0.2 | mg/kg         0.1         <0.1         -         -           mg/kg         0.2         <0.2 |



## SE249904 R0

|                                               |                                         | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>27 Jun 2023 | SE249904.006<br>Soil<br>27 Jun 2023<br>Sample 3 0.2-0.3 | SE249904.007<br>Soil<br>27 Jun 2023<br>Sample 4<br>0.1-0.15 | SE249904.008<br>Soil<br>27 Jun 2023<br>Sample 4 0.2-0.3 |
|-----------------------------------------------|-----------------------------------------|--------------------------------------------------------------|---------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Parameter                                     | Units                                   | LOR                                                          |                     |                                                         |                                                             |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023 | (continued)                             |                                                              |                     |                                                         |                                                             |                                                         |
| tert-butylbenzene                             | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 1,2,4-trimethylbenzene                        | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| sec-butylbenzene                              | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| p-isopropyltoluene                            | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| n-butylbenzene                                | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Nitrogenous Compounds                         |                                         |                                                              |                     |                                                         |                                                             |                                                         |
| Acrylonitrile                                 | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| 2-nitropropane                                | mg/kg                                   | 10                                                           | <10                 | -                                                       | -                                                           | -                                                       |
| Oxygenated Compounds                          |                                         | I                                                            |                     | I                                                       |                                                             |                                                         |
| Acetone (2-propanone)                         | mg/kg                                   | 10                                                           | <10                 | -                                                       | -                                                           | -                                                       |
| MtBE (Methyl-tert-butyl ether)                | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | _                                                       |
| Vinyl acetate*                                | mg/kg                                   | 10                                                           | <10                 | -                                                       | -                                                           | _                                                       |
| MIBK (4-methyl-2-pentanone)                   | mg/kg                                   | 1                                                            | <1                  | -                                                       | -                                                           | -                                                       |
| 2-hexanone (MBK)                              | mg/kg                                   | 5                                                            | <5                  | -                                                       | -                                                           | -                                                       |
| Polycyclic VOCs                               |                                         |                                                              |                     |                                                         |                                                             |                                                         |
| Naphthalene (VOC)*                            | mg/kg                                   | 0.1                                                          | <0.1                | -                                                       | -                                                           | -                                                       |
| Sulphonated Compounds                         |                                         |                                                              |                     |                                                         |                                                             |                                                         |
| Carbon disulfide                              | mg/kg                                   | 0.5                                                          | <0.5                | -                                                       | -                                                           | -                                                       |
| Surrogates                                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                                              | ~                   |                                                         |                                                             |                                                         |
| d4-1,2-dichloroethane (Surrogate)             | %                                       | -                                                            | 81                  | -                                                       | -                                                           | -                                                       |
| d8-toluene (Surrogate)                        | %                                       | -                                                            | 95                  | -                                                       | -                                                           | -                                                       |
| Bromofluorobenzene (Surrogate) Totals         | %                                       | -                                                            | 95                  | -                                                       | -                                                           | -                                                       |
| Total Other Chlorinated Hydrocarbons VIC EPA* | malka                                   | 1.8                                                          | <1.8                | -                                                       |                                                             | _                                                       |
| Total Chlorinated Hydrocarbons VIC EPA*       | mg/kg                                   | 1.8                                                          | <1.8                | -                                                       |                                                             | -                                                       |
| Total BTEX*                                   | mg/kg<br>mg/kg                          | 0.6                                                          | <0.6                | -                                                       | -                                                           | -                                                       |
| Total Volatile Chlorinated Hydrocarbons*      | mg/kg                                   | 3                                                            | <3.0                | -                                                       | -                                                           | -                                                       |
| Total VOC*                                    | mg/kg                                   | 24                                                           | <24                 | -                                                       | -                                                           | -                                                       |
| Total Xylenes*                                | mg/kg                                   | 0.3                                                          | <0.3                | -                                                       | -                                                           | -                                                       |
| Total Aylonoo                                 | ing/Kg                                  | 0.0                                                          | 0.0                 | -                                                       | -                                                           | -                                                       |



### SE249904 R0

|                                                       |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.005<br>Soil<br>27 Jun 2023<br>Sample 3 0.1-0.2 | SE249904.006<br>Soil<br>27 Jun 2023<br>Sample 3 0.2-0.3 | SE249904.007<br>Soil<br>27 Jun 2023<br>Sample 4<br>0.1-0.15 | SE249904.008<br>Soil<br>27 Jun 2023<br>Sample 4 0.2-0.3 |  |  |  |  |
|-------------------------------------------------------|-------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Parameter                                             | Units       | LOR                                                          |                                                         |                                                         |                                                             |                                                         |  |  |  |  |
| VOC's in Soil Method: AN433 Tested: 28/6/2023         | (continued) |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |  |
| Trihalomethanes                                       |             |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |  |
| Chloroform (THM)                                      | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Bromodichloromethane (THM)                            | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Dibromochloromethane (THM)                            | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Bromoform (THM)                                       | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| OC Pesticides in Soil Method: AN420 Tested: 29/6/2023 |             |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |  |
| Alpha BHC                                             | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Hexachlorobenzene (HCB)                               | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Beta BHC                                              | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Lindane (gamma BHC)                                   | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Delta BHC                                             | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Heptachlor                                            | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Aldrin                                                | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Isodrin                                               | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Heptachlor epoxide                                    | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Gamma Chlordane                                       | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Alpha Chlordane                                       | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Alpha Endosulfan                                      | mg/kg       | 0.2                                                          | <0.2                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| o,p'-DDE*                                             | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| p,p'-DDE                                              | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Dieldrin                                              | mg/kg       | 0.2                                                          | <0.2                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Endrin                                                | mg/kg       | 0.2                                                          | <0.2                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Beta Endosulfan                                       | mg/kg       | 0.2                                                          | <0.2                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| o,p'-DDD*                                             | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| p,p'-DDD                                              | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Endrin aldehyde                                       | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Endosulfan sulphate                                   | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| o,p'-DDT*                                             | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| p,p'-DDT                                              | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Endrin ketone                                         | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Methoxychlor                                          | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Mirex                                                 | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| trans-Nonachlor                                       | mg/kg       | 0.1                                                          | <0.1                                                    | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Total CLP OC Pesticides                               | mg/kg       | 1                                                            | <1                                                      | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Total OC VIC EPA                                      | mg/kg       | 1                                                            | <1                                                      | -                                                       | -                                                           | -                                                       |  |  |  |  |
| Surrogates                                            |             |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |  |
| Tetrachloro-m-xylene (TCMX) (Surrogate)               | %           | -                                                            | 85                                                      | -                                                       | -                                                           | -                                                       |  |  |  |  |

#### OP Pesticides in Soil Method: AN420 Tested: 29/6/2023

| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2 | - | - | - |
|-----------------------------------|-------|-----|------|---|---|---|
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2 | - | - | - |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2 | - | - | - |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5 | - | - | - |
| Dichlorvos                        | mg/kg | 0.5 | <0.5 | - | - | - |
| Dimethoate                        | mg/kg | 0.5 | <0.5 | - | - | - |
| Ethion                            | mg/kg | 0.2 | <0.2 | - | - | - |
| Fenitrothion                      | mg/kg | 0.2 | <0.2 | - | - | - |
| Malathion                         | mg/kg | 0.2 | <0.2 | - | - | - |
| Methidathion                      | mg/kg | 0.5 | <0.5 | - | - | - |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2 | - | - | - |
| Total OP Pesticides*              | mg/kg | 1.7 | <1.7 | - | - | - |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | 98 | - | - | - |
|------------------------------|---|---|----|---|---|---|
| d14-p-terphenyl (Surrogate)  | % | - | 97 | - | - | - |



## SE249904 R0

|                                                                             |       | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.005<br>Soil<br>27 Jun 2023<br>Sample 3 0.1-0.2 | SE249904.006<br>Soil<br>27 Jun 2023<br>Sample 3 0.2-0.3 | SE249904.007<br>Soil<br>27 Jun 2023<br>Sample 4<br>0.1-0.15 | SE249904.008<br>Soil<br>27 Jun 2023<br>Sample 4 0.2-0.3 |  |  |  |
|-----------------------------------------------------------------------------|-------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Parameter                                                                   | Units | LOR                                                          |                                                         |                                                         |                                                             |                                                         |  |  |  |
| Triazines in Soil Method: AN420 Tested: 29/6/2023                           |       |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |
| Simazine                                                                    | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Atrazine                                                                    | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Propazine                                                                   | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Terbuthylazine                                                              | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Metribuzin                                                                  | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Prometryn                                                                   | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Terbutryn                                                                   | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Cyanazine                                                                   | mg/kg | 0.5                                                          | <0.5                                                    | -                                                       | <0.5                                                        | -                                                       |  |  |  |
| Hexazinone                                                                  | mg/kg | 1                                                            | <1                                                      | -                                                       | <1                                                          | -                                                       |  |  |  |
| Surrogates                                                                  |       |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |
| d14-p-terphenyl (Surrogate)                                                 | %     | -                                                            | 90                                                      | -                                                       | 92                                                          | -                                                       |  |  |  |
| Synthetic Pyrethroids in Soil Method: AN420 Tested: 29/6/2023<br>Surrogates |       |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |
| d14-p-terphenyl (Surrogate)                                                 | %     | -                                                            | 94                                                      | -                                                       | 92                                                          | -                                                       |  |  |  |
| Synthetic Pyrethroids                                                       |       |                                                              |                                                         |                                                         |                                                             |                                                         |  |  |  |

| Bifenthrin       | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
|------------------|-------|-----|------|---|------|---|
| cis-Permethrin   | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| trans-Permethrin | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Cyfluthrin       | mg/kg | 1   | <1   | - | <1   | - |
| Cypermethrin     | mg/kg | 1   | <1   | - | <1   | - |
| Esfenvalerate    | mg/kg | 0.5 | <0.5 | - | <0.5 | - |
| Deltamethrin     | mg/kg | 0.5 | <0.5 | - | <0.5 | - |

### Carbamates in Soil Method: AN420 Tested: 29/6/2023

Carbamates

| Carbofuran                  | mg/kg | 0.5 | <0.5 | - | <0.5 | - |  |  |
|-----------------------------|-------|-----|------|---|------|---|--|--|
| Carbaryl                    | mg/kg | 0.5 | <0.5 | - | <0.5 | - |  |  |
| Surrogates                  |       |     |      |   |      |   |  |  |
| d14-p-terphenyl (Surrogate) | %     | -   | 94   | - | 92   | - |  |  |



## SE249904 R0

| Parameter                                            | Units        | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name<br>LOR | Soil<br>27 Jun 2023 | SE249904.006<br>Soil<br>27 Jun 2023<br>Sample 3 0.2-0.3 | SE249904.007<br>Soil<br>27 Jun 2023<br>Sample 4<br>0.1-0.15 | SE249904.008<br>Soil<br>27 Jun 2023<br>Sample 4 0.2-0.3 |
|------------------------------------------------------|--------------|---------------------------------------------------------------------|---------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569 | .SL.01 Metho | d: MA1569 Test                                                      | ed: 6/7/2023        |                                                         |                                                             |                                                         |
| Bromoxynil*                                          | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 4-Chlorophenocy acetic acid (4-CPA)*                 | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Clopyralid*                                          | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*           | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| 2,4-DB*                                              | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 2,6-D*                                               | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Dicamba*                                             | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| Dichloroprop / Dichlorprop-P*                        | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| Dinoseb*                                             | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Fluroxypyr*                                          | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| loxynil*                                             | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| MCPA*                                                | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| MCPB*                                                | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| mecoprop*                                            | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| Picloram*                                            | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| 2,4,5-T*                                             | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |
| 2,4,5-TP*                                            | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| 2,4,6-Trichlorophenoxy acetic acid*                  | mg/kg        | 0.5                                                                 | <0.5                | -                                                       | -                                                           | -                                                       |
| Triclopyr*                                           | mg/kg        | 0.01                                                                | <0.01               | -                                                       | -                                                           | -                                                       |

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 29/6/2023

| Arsenic, As  | mg/kg | 1   | 1    | 2    | 1    | 1    |
|--------------|-------|-----|------|------|------|------|
| Cadmium, Cd  | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
| Chromium, Cr | mg/kg | 0.5 | 7.0  | 7.5  | 8.9  | 5.8  |
| Copper, Cu   | mg/kg | 0.5 | 3.5  | 1.3  | 3.7  | 3.2  |
| Nickel, Ni   | mg/kg | 0.5 | 1.0  | 1.0  | 0.9  | 0.8  |
| Lead, Pb     | mg/kg | 1   | 10   | 8    | 11   | 9    |
| Zinc, Zn     | mg/kg | 2   | 13   | 6    | 18   | 9    |

### Mercury in Soil Method: AN312 Tested: 29/6/2023

| Mercury | mg/kg | 0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
|---------|-------|------|-------|-------|-------|-------|
|         |       |      |       |       |       |       |

### Moisture Content Method: AN002 Tested: 30/6/2023

|  | % Moisture | %w/w | 1 | 23.9 | 13.9 | 14.4 | 11.9 |
|--|------------|------|---|------|------|------|------|
|--|------------|------|---|------|------|------|------|

#### Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 29/6/2023

| Arsenic  | μg/L | 1   | - | - | - | - |
|----------|------|-----|---|---|---|---|
| Cadmium  | µg/L | 0.1 | - | - | - | - |
| Chromium | µg/L | 1   | - | - | - | - |
| Copper   | µg/L | 1   | - | - | - | - |
| Lead     | µg/L | 1   | - | - | - | - |
| Nickel   | µg/L | 1   | - | - | - | - |
| Zinc     | µg/L | 5   | - | - | - | - |

#### Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 4/7/2023

| Mercury | mg/L | 0.0001 | - | - | - | - |
|---------|------|--------|---|---|---|---|
|         |      |        |   |   |   |   |



### SE249904 R0

| Parameter                                                  |                | Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>27 Jun 2023<br>Sample 5 0.1-0.4 | Soil<br>27 Jun 2023<br>Sample 5 0.3-0.4 | Soil<br>27 Jun 2023<br>QC1 | Soil<br>27 Jun 2023<br>QC2 |
|------------------------------------------------------------|----------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------|----------------------------|
| Parameter                                                  | Units          | LOR                                         |                                         |                                         |                            |                            |
| VOC's in Soil Method: AN433 Tested: 30/6/2023<br>Fumigants |                |                                             |                                         |                                         |                            |                            |
| 2,2-dichloropropane                                        | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,2-dichloropropane                                        | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| cis-1,3-dichloropropene                                    | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| trans-1,3-dichloropropene                                  | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,2-dibromoethane (EDB)                                    | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Halogenated Aliphatics                                     |                |                                             |                                         |                                         |                            |                            |
| Dichlorodifluoromethane (CFC-12)                           | mg/kg          | 1                                           | -                                       | -                                       | -                          | -                          |
| Chloromethane                                              | mg/kg          | 1                                           | -                                       | -                                       | -                          | -                          |
| Vinyl chloride (Chloroethene)                              | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Bromomethane                                               | mg/kg          | 1                                           | -                                       | -                                       | -                          | -                          |
| Chloroethane                                               | mg/kg          | 1                                           | -                                       | -                                       | -                          | -                          |
| Trichlorofluoromethane                                     | mg/kg          | 1                                           | -                                       | -                                       | -                          | -                          |
| 1,1-dichloroethene                                         | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| lodomethane                                                | mg/kg          | 5                                           | -                                       | -                                       | -                          | -                          |
| Dichloromethane (Methylene chloride)                       | mg/kg          | 0.5                                         | -                                       | -                                       | -                          | -                          |
| Allyl chloride                                             | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| trans-1,2-dichloroethene                                   | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,1-dichloroethane                                         | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| cis-1,2-dichloroethene                                     | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Bromochloromethane                                         | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,2-dichloroethane                                         | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,1,1-trichloroethane                                      | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,1-dichloropropene                                        | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Carbon tetrachloride                                       | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Dibromomethane                                             | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Trichloroethene (Trichloroethylene,TCE)                    | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,1,2-trichloroethane                                      | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,3-dichloropropane                                        | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Tetrachloroethene (Perchloroethylene,PCE)                  | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,1,1,2-tetrachloroethane                                  | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,1,2,2-tetrachloroethane                                  | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,2,3-trichloropropane                                     | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| trans-1,4-dichloro-2-butene                                | mg/kg          | 1                                           | -                                       | -                                       | -                          | -                          |
| 1,2-dibromo-3-chloropropane                                | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Hexachlorobutadiene Halogenated Aromatics                  | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| -                                                          |                | 0.4                                         |                                         |                                         |                            |                            |
| Chlorobenzene Bromohenzene                                 | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| Bromobenzene 2-chlorotoluene                               | mg/kg<br>mg/kg | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 4-chlorotoluene                                            | mg/kg          | 0.1                                         | _                                       | -                                       | -                          | -                          |
| 1,3-dichlorobenzene                                        | mg/kg          | 0.1                                         | _                                       | -                                       | -                          | -                          |
| 1,4-dichlorobenzene                                        | mg/kg          | 0.1                                         | -                                       | -                                       | -                          | -                          |
| 1,2-dichlorobenzene                                        | mg/kg          | 0.1                                         | _                                       | -                                       | _                          |                            |
| 1,2,4-trichlorobenzene                                     | mg/kg          | 0.1                                         | _                                       | -                                       | -                          |                            |
| 1,2,3-trichlorobenzene                                     | mg/kg          | 0.1                                         | -                                       | -                                       | _                          | -                          |

Monocyclic Aromatic Hydrocarbons

| Benzene                   | mg/kg | 0.1 | - | - | - | - |
|---------------------------|-------|-----|---|---|---|---|
| Toluene                   | mg/kg | 0.1 | - | - | - | - |
| Ethylbenzene              | mg/kg | 0.1 | - | - | - | - |
| m/p-xylene                | mg/kg | 0.2 | - | - | - | - |
| Styrene (Vinyl benzene)   | mg/kg | 0.1 | - | - | - | - |
| o-xylene                  | mg/kg | 0.1 | - | - | - | - |
| Isopropylbenzene (Cumene) | mg/kg | 0.1 | - | - | - | - |
| n-propylbenzene           | mg/kg | 0.1 | - | - | - | - |
| 1,3,5-trimethylbenzene    | mg/kg | 0.1 | - | - | - | - |



## SE249904 R0

|                                               |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>27 Jun 2023 | SE249904.010<br>Soil<br>27 Jun 2023<br>Sample 5 0.3-0.4 | SE249904.011<br>Soil<br>27 Jun 2023<br>QC1 | SE249904.012<br>Soil<br>27 Jun 2023<br>QC2 |
|-----------------------------------------------|-------------|--------------------------------------------------------------|---------------------|---------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Parameter                                     | Units       | LOR                                                          |                     |                                                         |                                            |                                            |
| VOC's in Soil Method: AN433 Tested: 30/6/2023 | (continued) |                                                              |                     |                                                         |                                            |                                            |
| tert-butylbenzene                             | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| 1,2,4-trimethylbenzene                        | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| sec-butylbenzene                              | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| p-isopropyltoluene                            | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| n-butylbenzene                                | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| Nitrogenous Compounds                         |             |                                                              |                     |                                                         |                                            |                                            |
| Acrylonitrile                                 | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| 2-nitropropane                                | mg/kg       | 10                                                           | -                   | -                                                       | -                                          | -                                          |
| Oxygenated Compounds                          |             |                                                              |                     |                                                         |                                            |                                            |
| Acetone (2-propanone)                         | mg/kg       | 10                                                           | -                   | -                                                       | -                                          | -                                          |
| MtBE (Methyl-tert-butyl ether)                | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| Vinyl acetate*                                | mg/kg       | 10                                                           | -                   | -                                                       | -                                          | -                                          |
| MIBK (4-methyl-2-pentanone)                   | mg/kg       | 1                                                            | -                   | -                                                       | -                                          | -                                          |
| 2-hexanone (MBK)                              | mg/kg       | 5                                                            | -                   | -                                                       | -                                          | -                                          |
| Polycyclic VOCs                               |             |                                                              |                     |                                                         |                                            |                                            |
| Naphthalene (VOC)*                            | mg/kg       | 0.1                                                          | -                   | -                                                       | -                                          | -                                          |
| Sulphonated Compounds                         |             |                                                              |                     |                                                         |                                            |                                            |
| Carbon disulfide                              | mg/kg       | 0.5                                                          | -                   | -                                                       | -                                          | -                                          |
| Surrogates                                    |             |                                                              |                     |                                                         |                                            |                                            |
| d4-1,2-dichloroethane (Surrogate)             | %           | -                                                            | -                   | -                                                       | -                                          | -                                          |
| d8-toluene (Surrogate)                        | %           | -                                                            | -                   | -                                                       | -                                          | -                                          |
| Bromofluorobenzene (Surrogate)<br>Totals      | %           | -                                                            | -                   | -                                                       | -                                          | -                                          |
|                                               |             |                                                              |                     |                                                         |                                            |                                            |
| Total Other Chlorinated Hydrocarbons VIC EPA* | mg/kg       | 1.8                                                          | -                   | -                                                       | -                                          | -                                          |
| Total Chlorinated Hydrocarbons VIC EPA*       | mg/kg       | 1.8                                                          | -                   | -                                                       | -                                          | -                                          |
| Total BTEX*                                   | mg/kg       | 0.6                                                          | -                   | -                                                       | -                                          | -                                          |
| Total Volatile Chlorinated Hydrocarbons*      | mg/kg       | 3                                                            | -                   | -                                                       | -                                          | -                                          |
| Total VOC*                                    | mg/kg       | 24                                                           | -                   | -                                                       | -                                          | -                                          |
| Total Xylenes*                                | mg/kg       | 0.3                                                          | -                   | -                                                       | -                                          | -                                          |



### SE249904 R0

|                                                                  |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.009<br>Soil<br>27 Jun 2023<br>Sample 5 0.1-0.4 | SE249904.010<br>Soil<br>27 Jun 2023<br>Sample 5 0.3-0.4 | SE249904.011<br>Soil<br>27 Jun 2023<br>QC1 | SE249904.012<br>Soil<br>27 Jun 2023<br>QC2 |
|------------------------------------------------------------------|-------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Parameter                                                        | Units       | LOR                                                          |                                                         |                                                         |                                            |                                            |
| VOC's in Soil Method: AN433 Tested: 30/6/2023<br>Trihalomethanes | (continued) |                                                              |                                                         |                                                         |                                            |                                            |
| Chloroform (THM)                                                 | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Bromodichloromethane (THM)                                       | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | _                                          |
| Dibromochloromethane (THM)                                       | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Bromoform (THM)                                                  | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| OC Pesticides in Soil Method: AN420 Tested: 4/7/:                | 2023        |                                                              |                                                         |                                                         | I                                          |                                            |
| Alpha BHC                                                        | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Hexachlorobenzene (HCB)                                          | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Beta BHC                                                         | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Lindane (gamma BHC)                                              | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Delta BHC                                                        | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Heptachlor                                                       | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Aldrin                                                           | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Isodrin                                                          | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Heptachlor epoxide                                               | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Gamma Chlordane                                                  | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Alpha Chlordane                                                  | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Alpha Endosulfan                                                 | mg/kg       | 0.2                                                          | -                                                       | -                                                       | -                                          | -                                          |
| o,p'-DDE*                                                        | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| p,p'-DDE                                                         | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Dieldrin                                                         | mg/kg       | 0.2                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Endrin                                                           | mg/kg       | 0.2                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Beta Endosulfan                                                  | mg/kg       | 0.2                                                          | -                                                       | -                                                       | -                                          | -                                          |
| o,p'-DDD*                                                        | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| p,p'-DDD                                                         | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Endrin aldehyde                                                  | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Endosulfan sulphate                                              | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| o,p'-DDT*                                                        | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| p,p'-DDT                                                         | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Endrin ketone                                                    | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Methoxychlor                                                     | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Mirex                                                            | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| trans-Nonachlor                                                  | mg/kg       | 0.1                                                          | -                                                       | -                                                       | -                                          | -                                          |
| Total CLP OC Pesticides                                          | mg/kg       | 1                                                            | -                                                       | -                                                       | -                                          | -                                          |
| Total OC VIC EPA                                                 | mg/kg       | 1                                                            | -                                                       | -                                                       | -                                          | -                                          |
| Surrogates                                                       |             |                                                              |                                                         |                                                         |                                            |                                            |
| Tetrachloro-m-xylene (TCMX) (Surrogate)                          | %           | -                                                            | -                                                       | -                                                       | -                                          | -                                          |

#### OP Pesticides in Soil Method: AN420 Tested: 5/7/2023

| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | - | - | - | - |
|-----------------------------------|-------|-----|---|---|---|---|
| Bromophos Ethyl                   | mg/kg | 0.2 | - | - | - | - |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | - | - | - | - |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | - | - | - | - |
| Dichlorvos                        | mg/kg | 0.5 | - | - | - | - |
| Dimethoate                        | mg/kg | 0.5 | - | - | - | - |
| Ethion                            | mg/kg | 0.2 | - | - | - | - |
| Fenitrothion                      | mg/kg | 0.2 | - | - | - | - |
| Malathion                         | mg/kg | 0.2 | - | - | - | - |
| Methidathion                      | mg/kg | 0.5 | - | - | - | - |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | - | - | - | - |
| Total OP Pesticides*              | mg/kg | 1.7 | - | - | - | - |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | - | - | - | - |
|------------------------------|---|---|---|---|---|---|
| d14-p-terphenyl (Surrogate)  | % | - | - | - | - | - |



### SE249904 R0

-

|                                                   |              | Sample Number<br>Sample Matrix<br>Sample Date | SE249904.009<br>Soil<br>27 Jun 2023 | SE249904.010<br>Soil<br>27 Jun 2023 | SE249904.011<br>Soil<br>27 Jun 2023 | SE249904.012<br>Soil<br>27 Jun 2023 |
|---------------------------------------------------|--------------|-----------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
|                                                   |              | Sample Name                                   |                                     | Sample 5 0.3-0.4                    | QC1                                 | QC2                                 |
| Parameter                                         | Units        | LOR                                           |                                     |                                     |                                     |                                     |
| Triazines in Soil Method: AN420 Tested: 29/6/2023 |              |                                               |                                     |                                     |                                     |                                     |
| Simazine                                          | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Atrazine                                          | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Propazine                                         | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Terbuthylazine                                    | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Metribuzin                                        | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Prometryn                                         | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Terbutryn                                         | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Cyanazine                                         | mg/kg        | 0.5                                           | <0.5                                | -                                   | <0.5                                | <0.5                                |
| Hexazinone                                        | mg/kg        | 1                                             | <1                                  | -                                   | <1                                  | <1                                  |
| Surrogates                                        |              |                                               |                                     |                                     |                                     |                                     |
| d14-p-terphenyl (Surrogate)                       | %            | -                                             | 94                                  | -                                   | 94                                  | 94                                  |
| Surrogates                                        | d: 29/6/2023 |                                               |                                     |                                     |                                     |                                     |
| d14-p-terphenyl (Surrogate)                       | %            | -                                             | 96                                  | -                                   | -                                   | -                                   |
| Synthetic Pyrethroids                             |              |                                               |                                     |                                     |                                     |                                     |
| Bifenthrin                                        | mg/kg        | 0.5                                           | <0.5                                | -                                   | -                                   | -                                   |
| cis-Permethrin                                    | mg/kg        | 0.5                                           | <0.5                                | -                                   | -                                   | -                                   |
| trans-Permethrin                                  | mg/kg        | 0.5                                           | <0.5                                | -                                   | -                                   | -                                   |
| Cyfluthrin                                        | mg/kg        | 1                                             | <1                                  | -                                   | -                                   | -                                   |

| Cyfluthrin    | mg/kg | 1   | <1   | - | - |
|---------------|-------|-----|------|---|---|
| Cypermethrin  | mg/kg | 1   | <1   | - | - |
| Esfenvalerate | mg/kg | 0.5 | <0.5 | - | - |
| Deltamethrin  | mg/kg | 0.5 | <0.5 | - | - |
|               |       |     |      |   |   |

### Carbamates in Soil Method: AN420 Tested: 29/6/2023

| Carbamates |  |
|------------|--|
|            |  |
|            |  |

| Carbofuran                  | mg/kg | 0.5 | <0.5 | - | <0.5 | <0.5 |
|-----------------------------|-------|-----|------|---|------|------|
| Carbaryl                    | mg/kg | 0.5 | <0.5 | - | <0.5 | <0.5 |
| Surrogates                  |       |     |      |   |      |      |
| d14-p-terphenyl (Surrogate) | %     | -   | 96   | - | 96   | 94   |



## SE249904 R0

|                                                       |               | Sample Numbe<br>Sample Matri<br>Sample Dat<br>Sample Nam | x Soil<br>e 27 Jun 2023 | SE249904.010<br>Soil<br>27 Jun 2023<br>Sample 5 0.3-0.4 | SE249904.011<br>Soil<br>27 Jun 2023<br>QC1 | SE249904.012<br>Soil<br>27 Jun 2023<br>QC2 |
|-------------------------------------------------------|---------------|----------------------------------------------------------|-------------------------|---------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Parameter                                             | Units         | LOR                                                      |                         |                                                         |                                            |                                            |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Tes                                               | ted: 6/7/2023           |                                                         |                                            |                                            |
| Bromoxynil*                                           | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| Clopyralid*                                           | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| 2,4-DB*                                               | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| 2,6-D*                                                | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| Dicamba*                                              | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| Dinoseb*                                              | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| loxynil*                                              | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| MCPA*                                                 | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| MCPB*                                                 | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| mecoprop*                                             | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| Picloram*                                             | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                      | -                       | -                                                       | -                                          | -                                          |
| Triclopyr*                                            | mg/kg         | 0.01                                                     | -                       | -                                                       | -                                          | -                                          |

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 29/6/2023

| Arsenic, As  | mg/kg | 1   | 5    | 4    | 1    | 1    |
|--------------|-------|-----|------|------|------|------|
| Cadmium, Cd  | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
| Chromium, Cr | mg/kg | 0.5 | 4.8  | 4.5  | 5.2  | 4.1  |
| Copper, Cu   | mg/kg | 0.5 | 6.1  | 1.3  | 3.9  | 4.2  |
| Nickel, Ni   | mg/kg | 0.5 | 1.3  | 0.9  | 0.7  | 0.7  |
| Lead, Pb     | mg/kg | 1   | 15   | 8    | 9    | 10   |
| Zinc, Zn     | mg/kg | 2   | 19   | 3    | 14   | 17   |

### Mercury in Soil Method: AN312 Tested: 29/6/2023

|  | Mercury | mg/kg | 0.05 | <0.05 | 0.12 | <0.05 | <0.05 |
|--|---------|-------|------|-------|------|-------|-------|
|--|---------|-------|------|-------|------|-------|-------|

#### Moisture Content Method: AN002 Tested: 30/6/2023

| % Moisture | %w/w | 1 | 16.7 | 12.7 | 14.5 | 14.2 |
|------------|------|---|------|------|------|------|
|            |      |   |      |      |      |      |

#### Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 29/6/2023

| Arsenic  | μg/L | 1   | - | - | - | - |
|----------|------|-----|---|---|---|---|
| Cadmium  | µg/L | 0.1 | - | - | - | - |
| Chromium | µg/L | 1   | - | - | - | - |
| Copper   | µg/L | 1   | - | - | - | - |
| Lead     | µg/L | 1   | - | - | - | - |
| Nickel   | µg/L | 1   | - | - | - | - |
| Zinc     | µg/L | 5   | - | - | - | - |

#### Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 4/7/2023

| Mercury | mg/L | 0.0001 | - | - | - | - |
|---------|------|--------|---|---|---|---|
|         |      |        |   |   |   |   |



### SE249904 R0

|                                                            |       | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.013<br>Soil<br>27 Jun 2023<br>Rinsate | SE249904.014<br>Soil<br>27 Jun 2023<br>Sample 6 0.1-0.2 | SE249904.015<br>Soil<br>27 Jun 2023<br>Sample 6 0.2-0.3 | SE249904.016<br>Soil<br>27 Jun 2023<br>Sample 7 0.1-0.2 |
|------------------------------------------------------------|-------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                                  | Units | LOR                                                          |                                                |                                                         |                                                         |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023<br>Fumigants |       |                                                              |                                                |                                                         |                                                         |                                                         |
| 2,2-dichloropropane                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dichloropropane                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| cis-1,3-dichloropropene                                    | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| trans-1,3-dichloropropene                                  | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dibromoethane (EDB)                                    | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Halogenated Aliphatics                                     |       |                                                              |                                                |                                                         |                                                         |                                                         |
| Dichlorodifluoromethane (CFC-12)                           | mg/kg | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| Chloromethane                                              | mg/kg | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| Vinyl chloride (Chloroethene)                              | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Bromomethane                                               | mg/kg | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| Chloroethane                                               | mg/kg | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| Trichlorofluoromethane                                     | mg/kg | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| 1,1-dichloroethene                                         | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| lodomethane                                                | mg/kg | 5                                                            | -                                              | <5                                                      | -                                                       | -                                                       |
| Dichloromethane (Methylene chloride)                       | mg/kg | 0.5                                                          | -                                              | <0.5                                                    | -                                                       | -                                                       |
| Allyl chloride                                             | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| trans-1,2-dichloroethene                                   | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,1-dichloroethane                                         | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| cis-1,2-dichloroethene                                     | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Bromochloromethane                                         | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dichloroethane                                         | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,1,1-trichloroethane                                      | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,1-dichloropropene                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Carbon tetrachloride                                       | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Dibromomethane                                             | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Trichloroethene (Trichloroethylene, TCE)                   | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,1,2-trichloroethane                                      | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,3-dichloropropane                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Tetrachloroethene (Perchloroethylene,PCE)                  | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,1,1,2-tetrachloroethane                                  | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,1,2,2-tetrachloroethane                                  | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2,3-trichloropropane                                     | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| trans-1,4-dichloro-2-butene                                | mg/kg | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| 1,2-dibromo-3-chloropropane                                | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Hexachlorobutadiene                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Halogenated Aromatics                                      | 1     |                                                              |                                                |                                                         |                                                         |                                                         |
| Chlorobenzene                                              | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Bromobenzene                                               | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 2-chlorotoluene                                            | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 4-chlorotoluene                                            | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,3-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,4-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2,4-trichlorobenzene                                     | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2,3-trichlorobenzene                                     | mg/kg | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |

Monocyclic Aromatic Hydrocarbons

| Benzene                   | mg/kg | 0.1 | - | <0.1 | - | - |
|---------------------------|-------|-----|---|------|---|---|
| Toluene                   | mg/kg | 0.1 | - | <0.1 | - | - |
| Ethylbenzene              | mg/kg | 0.1 | - | <0.1 | - | - |
| m/p-xylene                | mg/kg | 0.2 | - | <0.2 | - | - |
| Styrene (Vinyl benzene)   | mg/kg | 0.1 | - | <0.1 | - | - |
| o-xylene                  | mg/kg | 0.1 | - | <0.1 | - | - |
| Isopropylbenzene (Cumene) | mg/kg | 0.1 | - | <0.1 | - | - |
| n-propylbenzene           | mg/kg | 0.1 | - | <0.1 | - | - |
| 1,3,5-trimethylbenzene    | mg/kg | 0.1 | - | <0.1 | - | - |



## SE249904 R0

|                                               |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.013<br>Soil<br>27 Jun 2023<br>Rinsate | SE249904.014<br>Soil<br>27 Jun 2023<br>Sample 6 0.1-0.2 | SE249904.015<br>Soil<br>27 Jun 2023<br>Sample 6 0.2-0.3 | SE249904.016<br>Soil<br>27 Jun 2023<br>Sample 7 0.1-0.2 |
|-----------------------------------------------|-------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                     | Units       | LOR                                                          |                                                |                                                         |                                                         |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023 | (continued) |                                                              |                                                |                                                         |                                                         |                                                         |
| tert-butylbenzene                             | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 1,2,4-trimethylbenzene                        | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| sec-butylbenzene                              | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| p-isopropyltoluene                            | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| n-butylbenzene                                | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Nitrogenous Compounds                         |             |                                                              |                                                |                                                         |                                                         |                                                         |
| Acrylonitrile                                 | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| 2-nitropropane                                | mg/kg       | 10                                                           | -                                              | <10                                                     | -                                                       | -                                                       |
| Oxygenated Compounds                          |             |                                                              |                                                |                                                         |                                                         |                                                         |
| Acetone (2-propanone)                         | mg/kg       | 10                                                           | -                                              | <10                                                     | -                                                       | -                                                       |
| MtBE (Methyl-tert-butyl ether)                | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Vinyl acetate*                                | mg/kg       | 10                                                           | -                                              | <10                                                     | -                                                       | -                                                       |
| MIBK (4-methyl-2-pentanone)                   | mg/kg       | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| 2-hexanone (MBK)                              | mg/kg       | 5                                                            | -                                              | <5                                                      | -                                                       | -                                                       |
| Polycyclic VOCs                               |             |                                                              |                                                |                                                         |                                                         |                                                         |
| Naphthalene (VOC)*                            | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Sulphonated Compounds                         |             |                                                              |                                                |                                                         |                                                         |                                                         |
| Carbon disulfide                              | mg/kg       | 0.5                                                          | -                                              | <0.5                                                    | -                                                       | -                                                       |
| Surrogates                                    |             |                                                              |                                                |                                                         |                                                         |                                                         |
| d4-1,2-dichloroethane (Surrogate)             | %           | -                                                            | -                                              | 93                                                      | -                                                       | -                                                       |
| d8-toluene (Surrogate)                        | %           | -                                                            | -                                              | 108                                                     | -                                                       | -                                                       |
| Bromofluorobenzene (Surrogate)<br>Totals      | %           | -                                                            | -                                              | 83                                                      | -                                                       | -                                                       |
|                                               |             |                                                              |                                                |                                                         |                                                         | ]                                                       |
| Total Other Chlorinated Hydrocarbons VIC EPA* | mg/kg       | 1.8                                                          | -                                              | <1.8                                                    | -                                                       | -                                                       |
| Total Chlorinated Hydrocarbons VIC EPA*       | mg/kg       | 1.8                                                          | -                                              | <1.8                                                    | -                                                       | -                                                       |
| Total BTEX*                                   | mg/kg       | 0.6                                                          | -                                              | <0.6                                                    | -                                                       | -                                                       |
| Total Volatile Chlorinated Hydrocarbons*      | mg/kg       | 3                                                            | -                                              | <3.0                                                    | -                                                       | -                                                       |
| Total VOC*                                    | mg/kg       | 24                                                           | -                                              | <24                                                     | -                                                       | -                                                       |
| Total Xylenes*                                | mg/kg       | 0.3                                                          | -                                              | <0.3                                                    | -                                                       | -                                                       |



### SE249904 R0

|                                                                  |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.013<br>Soil<br>27 Jun 2023<br>Rinsate | SE249904.014<br>Soil<br>27 Jun 2023<br>Sample 6 0.1-0.2 | SE249904.015<br>Soil<br>27 Jun 2023<br>Sample 6 0.2-0.3 | SE249904.016<br>Soil<br>27 Jun 2023<br>Sample 7 0.1-0.2 |
|------------------------------------------------------------------|-------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                                        | Units       | LOR                                                          |                                                |                                                         |                                                         |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023<br>Trihalomethanes | (continued) |                                                              |                                                |                                                         |                                                         |                                                         |
| Chloroform (THM)                                                 | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Bromodichloromethane (THM)                                       | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Dibromochloromethane (THM)                                       | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Bromoform (THM)                                                  | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| OC Pesticides in Soil Method: AN420 Tested: 4/7/2                | 2023        |                                                              |                                                |                                                         |                                                         |                                                         |
| Alpha BHC                                                        | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Hexachlorobenzene (HCB)                                          | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Beta BHC                                                         | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Lindane (gamma BHC)                                              | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Delta BHC                                                        | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Heptachlor                                                       | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Aldrin                                                           | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Isodrin                                                          | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Heptachlor epoxide                                               | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Gamma Chlordane                                                  | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Alpha Chlordane                                                  | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Alpha Endosulfan                                                 | mg/kg       | 0.2                                                          | -                                              | <0.2                                                    | -                                                       | -                                                       |
| o,p'-DDE*                                                        | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| p,p'-DDE                                                         | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Dieldrin                                                         | mg/kg       | 0.2                                                          | -                                              | <0.2                                                    | -                                                       | -                                                       |
| Endrin                                                           | mg/kg       | 0.2                                                          | -                                              | <0.2                                                    | -                                                       | -                                                       |
| Beta Endosulfan                                                  | mg/kg       | 0.2                                                          | -                                              | <0.2                                                    | -                                                       | -                                                       |
| o,p'-DDD*                                                        | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| p,p'-DDD                                                         | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Endrin aldehyde                                                  | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Endosulfan sulphate                                              | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| o,p'-DDT*                                                        | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| p,p'-DDT                                                         | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Endrin ketone                                                    | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Methoxychlor                                                     | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Mirex                                                            | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| trans-Nonachlor                                                  | mg/kg       | 0.1                                                          | -                                              | <0.1                                                    | -                                                       | -                                                       |
| Total CLP OC Pesticides                                          | mg/kg       | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| Total OC VIC EPA                                                 | mg/kg       | 1                                                            | -                                              | <1                                                      | -                                                       | -                                                       |
| Surrogates                                                       |             |                                                              |                                                |                                                         |                                                         |                                                         |
| Tetrachloro-m-xylene (TCMX) (Surrogate)                          | %           | -                                                            | -                                              | 83                                                      | -                                                       | -                                                       |

#### OP Pesticides in Soil Method: AN420 Tested: 5/7/2023

| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | - | <0.2 | - | - |
|-----------------------------------|-------|-----|---|------|---|---|
| Bromophos Ethyl                   | mg/kg | 0.2 | - | <0.2 | - | - |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | - | <0.2 | - | - |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | - | <0.5 | - | - |
| Dichlorvos                        | mg/kg | 0.5 | - | <0.5 | - | - |
| Dimethoate                        | mg/kg | 0.5 | - | <0.5 | - | - |
| Ethion                            | mg/kg | 0.2 | - | <0.2 | - | - |
| Fenitrothion                      | mg/kg | 0.2 | - | <0.2 | - | - |
| Malathion                         | mg/kg | 0.2 | - | <0.2 | - | - |
| Methidathion                      | mg/kg | 0.5 | - | <0.5 | - | - |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | - | <0.2 | - | - |
| Total OP Pesticides*              | mg/kg | 1.7 | - | <1.7 | - | - |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | - | 98 | - | - |
|------------------------------|---|---|---|----|---|---|
| d14-p-terphenyl (Surrogate)  | % | - | - | 98 | - | - |



### SE249904 R0

<0.5

|                                                                                                |                   | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>27 Jun 2023 | SE249904.014<br>Soil<br>27 Jun 2023<br>Sample 6 0.1-0.2 | SE249904.015<br>Soil<br>27 Jun 2023<br>Sample 6 0.2-0.3 | SE249904.016<br>Soil<br>27 Jun 2023<br>Sample 7 0.1-0.2 |
|------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|---------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                                                                      | Units             | LOR                                                          |                     |                                                         |                                                         |                                                         |
| Triazines in Soil Method: AN420 Tested: 5/7/2023                                               |                   |                                                              |                     |                                                         |                                                         |                                                         |
| Simazine                                                                                       | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Atrazine                                                                                       | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Propazine                                                                                      | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Terbuthylazine                                                                                 | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Metribuzin                                                                                     | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Prometryn                                                                                      | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Terbutryn                                                                                      | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Cyanazine                                                                                      | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Hexazinone                                                                                     | mg/kg             | 1                                                            | -                   | <1                                                      | -                                                       | <1                                                      |
| Surrogates                                                                                     | 1                 |                                                              |                     |                                                         |                                                         |                                                         |
| d14-p-terphenyl (Surrogate)                                                                    | %                 | -                                                            | -                   | 94                                                      | -                                                       | 92                                                      |
| Synthetic Pyrethroids in Soil Method: AN420 Teste<br>Surrogates<br>d14-p-terphenyl (Surrogate) | od: 5/7/2023<br>% | -                                                            | -                   | 94                                                      | -                                                       | 92                                                      |
|                                                                                                |                   |                                                              |                     |                                                         |                                                         |                                                         |
| Synthetic Pyrethroids                                                                          |                   |                                                              |                     |                                                         |                                                         |                                                         |
| Bifenthrin                                                                                     | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| cis-Permethrin                                                                                 | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| trans-Permethrin                                                                               | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
| Cyfluthrin                                                                                     | mg/kg             | 1                                                            | -                   | <1                                                      | -                                                       | <1                                                      |
| Cypermethrin                                                                                   | mg/kg             | 1                                                            | -                   | <1                                                      | -                                                       | <1                                                      |
| Esfenvalerate                                                                                  | mg/kg             | 0.5                                                          | -                   | <0.5                                                    | -                                                       | <0.5                                                    |
|                                                                                                | 1                 |                                                              |                     |                                                         |                                                         |                                                         |

#### Carbamates in Soil Method: AN420 Tested: 5/7/2023

### Carbamates

Deltamethrin

| Carbofuran                  | mg/kg | 0.5 | - | <0.5 | - | <0.5 |  |
|-----------------------------|-------|-----|---|------|---|------|--|
| Carbaryl                    | mg/kg | 0.5 | - | <0.5 | - | <0.5 |  |
| Surrogates                  |       |     |   |      |   |      |  |
| d14-p-terphenyl (Surrogate) | %     | -   | - | 94   | - | 92   |  |

0.5

mg/kg

<0.5



### SE249904 R0

|                                                       |               | Sample Numbe<br>Sample Matrix<br>Sample Date<br>Sample Name | c Soil<br>e 27 Jun 2023 | SE249904.014<br>Soil<br>27 Jun 2023<br>Sample 6 0.1-0.2 | SE249904.015<br>Soil<br>27 Jun 2023<br>Sample 6 0.2-0.3 | SE249904.016<br>Soil<br>27 Jun 2023<br>Sample 7 0.1-0.2 |
|-------------------------------------------------------|---------------|-------------------------------------------------------------|-------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                             | Units         | LOR                                                         |                         |                                                         |                                                         |                                                         |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Test                                                 | ted: 6/7/2023           |                                                         |                                                         |                                                         |
| Bromoxynil*                                           | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| Clopyralid*                                           | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| 2,4-DB*                                               | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| 2,6-D*                                                | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| Dicamba*                                              | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| Dinoseb*                                              | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| loxynii*                                              | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| MCPA*                                                 | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| MCPB*                                                 | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| mecoprop*                                             | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| Picloram*                                             | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                         | -                       | <0.5                                                    | -                                                       | -                                                       |
| Triclopyr*                                            | mg/kg         | 0.01                                                        | -                       | <0.01                                                   | -                                                       | -                                                       |

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 4/7/2023

| Arsenic, As  | mg/kg | 1   | - | 2    | 2    | 2    |
|--------------|-------|-----|---|------|------|------|
| Cadmium, Cd  | mg/kg | 0.3 | - | <0.3 | <0.3 | <0.3 |
| Chromium, Cr | mg/kg | 0.5 | - | 9.3  | 7.6  | 8.8  |
| Copper, Cu   | mg/kg | 0.5 | - | 1.2  | 2.9  | 3.6  |
| Nickel, Ni   | mg/kg | 0.5 | - | 1.2  | 0.7  | 1.3  |
| Lead, Pb     | mg/kg | 1   | - | 6    | 11   | 12   |
| Zinc, Zn     | mg/kg | 2   | - | 4    | 11   | 13   |

### Mercury in Soil Method: AN312 Tested: 4/7/2023

| Mercury         mg/kg         0.05         -         <0.05 |         |       |      |   |        |       |       |
|------------------------------------------------------------|---------|-------|------|---|--------|-------|-------|
|                                                            | Mercury | mg/kg | 0.05 | - | < 0.05 | <0.05 | <0.05 |

#### Moisture Content Method: AN002 Tested: 4/7/2023

|  | ſ | % Moisture | %w/w | 1 | - | 12.7 | 15.2 | 15.7 |
|--|---|------------|------|---|---|------|------|------|
|--|---|------------|------|---|---|------|------|------|

#### Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 29/6/2023

| Arsenic  | μg/L | 1   | <1   | - | - | - |
|----------|------|-----|------|---|---|---|
| Cadmium  | µg/L | 0.1 | <0.1 | - | - | - |
| Chromium | µg/L | 1   | <1   | - | - | - |
| Copper   | µg/L | 1   | <1   | - | - | - |
| Lead     | µg/L | 1   | <1   | - | - | - |
| Nickel   | µg/L | 1   | <1   | - | - | - |
| Zinc     | µg/L | 5   | <5   | - | - | - |

#### Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 3/7/2023

| Mercury | mg/L | 0.0001 | <0.0001 | - | - | - |
|---------|------|--------|---------|---|---|---|



### SE249904 R0

|                                                            |       | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | soil<br>27 Jun 2023 | SE249904.018<br>Soil<br>27 Jun 2023<br>Sample 8 0.1-0.2 | SE249904.019<br>Soil<br>27 Jun 2023<br>Sample 8 0.3-0.4 | SE249904.020<br>Soil<br>27 Jun 2023<br>Sample 9 0.1-0.2 |
|------------------------------------------------------------|-------|--------------------------------------------------------------|---------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                                  | Units | LOR                                                          |                     |                                                         |                                                         |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023<br>Fumigants |       |                                                              |                     |                                                         |                                                         |                                                         |
| 2,2-dichloropropane                                        | mg/kg | 0.1                                                          | _                   | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dichloropropane                                        | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | _                                                       |
| cis-1,3-dichloropropene                                    | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| trans-1,3-dichloropropene                                  | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dibromoethane (EDB)                                    | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Halogenated Aliphatics                                     | 1     |                                                              |                     |                                                         |                                                         |                                                         |
| Dichlorodifluoromethane (CFC-12)                           | mg/kg | 1                                                            | -                   | <1                                                      | -                                                       | -                                                       |
| Chloromethane                                              | mg/kg | 1                                                            | -                   | <1                                                      | -                                                       | -                                                       |
| Vinyl chloride (Chloroethene)                              | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Bromomethane                                               | mg/kg | 1                                                            | -                   | <1                                                      | -                                                       | -                                                       |
| Chloroethane                                               | mg/kg | 1                                                            | -                   | <1                                                      | -                                                       | -                                                       |
| Trichlorofluoromethane                                     | mg/kg | 1                                                            | -                   | <1                                                      | -                                                       | -                                                       |
| 1,1-dichloroethene                                         | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| lodomethane                                                | mg/kg | 5                                                            | -                   | <5                                                      | -                                                       | -                                                       |
| Dichloromethane (Methylene chloride)                       | mg/kg | 0.5                                                          | -                   | <0.5                                                    | -                                                       | -                                                       |
| Allyl chloride                                             | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| trans-1,2-dichloroethene                                   | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,1-dichloroethane                                         | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| cis-1,2-dichloroethene                                     | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Bromochloromethane                                         | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dichloroethane                                         | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,1,1-trichloroethane                                      | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,1-dichloropropene                                        | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Carbon tetrachloride                                       | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Dibromomethane                                             | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Trichloroethene (Trichloroethylene,TCE)                    | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,1,2-trichloroethane                                      | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,3-dichloropropane                                        | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Tetrachloroethene (Perchloroethylene,PCE)                  | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,1,1,2-tetrachloroethane                                  | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,1,2,2-tetrachloroethane                                  | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,2,3-trichloropropane                                     | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| trans-1,4-dichloro-2-butene                                | mg/kg | 1                                                            | -                   | <1                                                      | -                                                       | -                                                       |
| 1,2-dibromo-3-chloropropane                                | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Hexachlorobutadiene                                        | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Halogenated Aromatics                                      | 1     |                                                              |                     |                                                         |                                                         |                                                         |
| Chlorobenzene                                              | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Bromobenzene                                               | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 2-chlorotoluene                                            | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 4-chlorotoluene                                            | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,3-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,4-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,2-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1                                                          | 1     |                                                              |                     | 1                                                       |                                                         |                                                         |

Monocyclic Aromatic Hydrocarbons

1,2,4-trichlorobenzene

1,2,3-trichlorobenzene

| Benzene                   | mg/kg | 0.1 | - | <0.1 | - | - |
|---------------------------|-------|-----|---|------|---|---|
| Toluene                   | mg/kg | 0.1 | - | <0.1 | - | - |
| Ethylbenzene              | mg/kg | 0.1 | - | <0.1 | - | - |
| m/p-xylene                | mg/kg | 0.2 | - | <0.2 | - | - |
| Styrene (Vinyl benzene)   | mg/kg | 0.1 | - | <0.1 | - | - |
| o-xylene                  | mg/kg | 0.1 | - | <0.1 | - | - |
| Isopropylbenzene (Cumene) | mg/kg | 0.1 | - | <0.1 | - | - |
| n-propylbenzene           | mg/kg | 0.1 | - | <0.1 | - | - |
| 1,3,5-trimethylbenzene    | mg/kg | 0.1 | - | <0.1 | - | - |

0.1

0.1

-

-

mg/kg

mg/kg

<0.1

<0.1

-

-

-

-



## SE249904 R0

|                                               |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>27 Jun 2023 | SE249904.018<br>Soil<br>27 Jun 2023<br>Sample 8 0.1-0.2 | SE249904.019<br>Soil<br>27 Jun 2023<br>Sample 8 0.3-0.4 | SE249904.020<br>Soil<br>27 Jun 2023<br>Sample 9 0.1-0.2 |
|-----------------------------------------------|-------------|--------------------------------------------------------------|---------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                     | Units       | LOR                                                          |                     |                                                         |                                                         |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023 | (continued) |                                                              |                     |                                                         |                                                         |                                                         |
| tert-butylbenzene                             | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 1,2,4-trimethylbenzene                        | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| sec-butylbenzene                              | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| p-isopropyltoluene                            | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| n-butylbenzene                                | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Nitrogenous Compounds                         |             |                                                              |                     |                                                         |                                                         |                                                         |
| Acrylonitrile                                 | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| 2-nitropropane                                | mg/kg       | 10                                                           | -                   | <10                                                     | -                                                       | -                                                       |
| Oxygenated Compounds                          |             |                                                              |                     |                                                         |                                                         |                                                         |
| Acetone (2-propanone)                         | mg/kg       | 10                                                           | -                   | <10                                                     | -                                                       | -                                                       |
| MtBE (Methyl-tert-butyl ether)                | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Vinyl acetate*                                | mg/kg       | 10                                                           | -                   | <10                                                     | -                                                       | -                                                       |
| MIBK (4-methyl-2-pentanone)                   | mg/kg       | 1                                                            | -                   | <1                                                      | -                                                       | -                                                       |
| 2-hexanone (MBK)                              | mg/kg       | 5                                                            | -                   | <5                                                      | -                                                       | -                                                       |
| Polycyclic VOCs                               |             |                                                              |                     |                                                         |                                                         |                                                         |
| Naphthalene (VOC)*                            | mg/kg       | 0.1                                                          | -                   | <0.1                                                    | -                                                       | -                                                       |
| Sulphonated Compounds                         |             |                                                              |                     |                                                         |                                                         |                                                         |
| Carbon disulfide                              | mg/kg       | 0.5                                                          | -                   | <0.5                                                    | -                                                       | -                                                       |
| Surrogates                                    |             |                                                              |                     |                                                         |                                                         |                                                         |
| d4-1,2-dichloroethane (Surrogate)             | %           | -                                                            | -                   | 92                                                      | -                                                       | -                                                       |
| d8-toluene (Surrogate)                        | %           | -                                                            | -                   | 101                                                     | -                                                       | -                                                       |
| Bromofluorobenzene (Surrogate)                | %           | -                                                            | -                   | 75                                                      | -                                                       | -                                                       |
| Totals                                        |             |                                                              |                     | 1                                                       | T                                                       |                                                         |
| Total Other Chlorinated Hydrocarbons VIC EPA* | mg/kg       | 1.8                                                          | -                   | <1.8                                                    | -                                                       | -                                                       |
| Total Chlorinated Hydrocarbons VIC EPA*       | mg/kg       | 1.8                                                          | -                   | <1.8                                                    | -                                                       | -                                                       |
| Total BTEX*                                   | mg/kg       | 0.6                                                          | -                   | <0.6                                                    | -                                                       | -                                                       |
| Total Volatile Chlorinated Hydrocarbons*      | mg/kg       | 3                                                            | -                   | <3.0                                                    | -                                                       | -                                                       |
| Total VOC*                                    | mg/kg       | 24                                                           | -                   | <24                                                     | -                                                       | -                                                       |
| Total Xylenes*                                | mg/kg       | 0.3                                                          | -                   | <0.3                                                    | -                                                       | -                                                       |



### SE249904 R0

|                                                   |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.017<br>Soil<br>27 Jun 2023<br>Sample 7<br>0.25-0.35 | SE249904.018<br>Soil<br>27 Jun 2023<br>Sample 8 0.1-0.2 | SE249904.019<br>Soil<br>27 Jun 2023<br>Sample 8 0.3-0.4 | SE249904.020<br>Soil<br>27 Jun 2023<br>Sample 9 0.1-0.2 |
|---------------------------------------------------|-------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                         | Units       | LOR                                                          |                                                              |                                                         |                                                         |                                                         |
| VOC's in Soil Method: AN433 Tested: 30/6/2023     | (continued) |                                                              |                                                              |                                                         |                                                         |                                                         |
| Trihalomethanes                                   |             |                                                              |                                                              |                                                         |                                                         |                                                         |
| Chloroform (THM)                                  | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Bromodichloromethane (THM)                        | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Dibromochloromethane (THM)                        | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Bromoform (THM)                                   | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| OC Pesticides in Soil Method: AN420 Tested: 4/7/2 | 2023        |                                                              |                                                              |                                                         |                                                         |                                                         |
| Alpha BHC                                         | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Hexachlorobenzene (HCB)                           | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Beta BHC                                          | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Lindane (gamma BHC)                               | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Delta BHC                                         | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Heptachlor                                        | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Aldrin                                            | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Isodrin                                           | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Heptachlor epoxide                                | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Gamma Chlordane                                   | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Alpha Chlordane                                   | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Alpha Endosulfan                                  | mg/kg       | 0.2                                                          | -                                                            | <0.2                                                    | -                                                       | -                                                       |
| o,p'-DDE*                                         | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| p,p'-DDE                                          | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Dieldrin                                          | mg/kg       | 0.2                                                          | -                                                            | <0.2                                                    | -                                                       | -                                                       |
| Endrin                                            | mg/kg       | 0.2                                                          | -                                                            | <0.2                                                    | -                                                       | -                                                       |
| Beta Endosulfan                                   | mg/kg       | 0.2                                                          | -                                                            | <0.2                                                    | -                                                       | -                                                       |
| o,p'-DDD*                                         | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| p,p'-DDD                                          | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Endrin aldehyde                                   | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Endosulfan sulphate                               | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| o,p'-DDT*                                         | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| p,p'-DDT                                          | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Endrin ketone                                     | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Methoxychlor                                      | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Mirex                                             | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| trans-Nonachlor                                   | mg/kg       | 0.1                                                          | -                                                            | <0.1                                                    | -                                                       | -                                                       |
| Total CLP OC Pesticides                           | mg/kg       | 1                                                            | -                                                            | <1                                                      | -                                                       | -                                                       |
| Total OC VIC EPA                                  | mg/kg       | 1                                                            | -                                                            | <1                                                      | -                                                       | -                                                       |
| Surrogates                                        |             |                                                              |                                                              |                                                         |                                                         |                                                         |
| Tetrachloro-m-xylene (TCMX) (Surrogate)           | %           | -                                                            | -                                                            | 86                                                      | -                                                       | -                                                       |

#### OP Pesticides in Soil Method: AN420 Tested: 5/7/2023

| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | _ | <0.2 | _ | _ |
|-----------------------------------|-------|-----|---|------|---|---|
|                                   |       | -   |   |      |   |   |
| Bromophos Ethyl                   | mg/kg | 0.2 | - | <0.2 | - | - |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | - | <0.2 | - | - |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | - | <0.5 | - | - |
| Dichlorvos                        | mg/kg | 0.5 | - | <0.5 | - | - |
| Dimethoate                        | mg/kg | 0.5 | - | <0.5 | - | - |
| Ethion                            | mg/kg | 0.2 | - | <0.2 | - | - |
| Fenitrothion                      | mg/kg | 0.2 | - | <0.2 | - | - |
| Malathion                         | mg/kg | 0.2 | - | <0.2 | - | - |
| Methidathion                      | mg/kg | 0.5 | - | <0.5 | - | - |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | - | <0.2 | - | - |
| Total OP Pesticides*              | mg/kg | 1.7 | - | <1.7 | - | - |

#### Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | - | 103 | - | - |
|------------------------------|---|---|---|-----|---|---|
| d14-p-terphenyl (Surrogate)  | % | - | - | 99  | - | - |


# SE249904 R0

<1

<0.5

<0.5

| Parameter         Units         LOR           Triazines in Soil         Method: AN420         Tested: 5/7/2023         5/7/2023           Simazine         mg/kg         0.5         - | <0.5 |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|
|                                                                                                                                                                                        | <0.5 |        |
| Simazine mg/kg 0.5 -                                                                                                                                                                   | <0.5 |        |
|                                                                                                                                                                                        |      | - <0.5 |
| Atrazine mg/kg 0.5 -                                                                                                                                                                   | <0.5 | - <0.5 |
| Propazine mg/kg 0.5 -                                                                                                                                                                  | <0.5 | - <0.5 |
| Terbuthylazine mg/kg 0.5 -                                                                                                                                                             | <0.5 | - <0.5 |
| Metribuzin mg/kg 0.5 -                                                                                                                                                                 | <0.5 | - <0.5 |
| Prometryn mg/kg 0.5 -                                                                                                                                                                  | <0.5 | - <0.5 |
| Terbutryn mg/kg 0.5 -                                                                                                                                                                  | <0.5 | - <0.5 |
| Cyanazine mg/kg 0.5 -                                                                                                                                                                  | <0.5 | - <0.5 |
| Hexazinone mg/kg 1 -                                                                                                                                                                   | <1   | - <1   |
| Surrogates                                                                                                                                                                             |      |        |
| d14-p-terphenyl (Surrogate) %                                                                                                                                                          | 92   | - 94   |
| Synthetic Pyrethroids in Soil Method: AN420 Tested: 5/7/2023<br>Surrogates                                                                                                             |      |        |
| d14-p-terphenyl (Surrogate) %                                                                                                                                                          | 94   | - 92   |
| Synthetic Pyrethroids                                                                                                                                                                  |      |        |
| Bifenthrin mg/kg 0.5 -                                                                                                                                                                 | <0.5 | - <0.5 |
| cis-Permethrin mg/kg 0.5 -                                                                                                                                                             | <0.5 | - <0.5 |
| trans-Permethrin mg/kg 0.5 -                                                                                                                                                           | <0.5 | - <0.5 |
| Cyfluthrin mg/kg 1 -                                                                                                                                                                   | <1   | - <1   |

### Carbamates in Soil Method: AN420 Tested: 5/7/2023

### Carbamates

Cypermethrin

Esfenvalerate

Deltamethrin

| Carbofuran                  | mg/kg | 0.5 | - | <0.5 | - | <0.5 |
|-----------------------------|-------|-----|---|------|---|------|
| Carbaryl                    | mg/kg | 0.5 | - | <0.5 | - | <0.5 |
| Surrogates                  |       |     |   |      |   |      |
| d14-p-terphenyl (Surrogate) | %     | -   | - | 94   | - | 92   |

1

0.5

0.5

<1

<0.5

<0.5

-

mg/kg

mg/kg

mg/kg



# SE249904 R0

|                                                       |               | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | c Soil<br>e 27 Jun 2023 | SE249904.018<br>Soil<br>27 Jun 2023<br>Sample 8 0.1-0.2 | SE249904.019<br>Soil<br>27 Jun 2023<br>Sample 8 0.3-0.4 | SE249904.020<br>Soil<br>27 Jun 2023<br>Sample 9 0.1-0.2 |
|-------------------------------------------------------|---------------|--------------------------------------------------------------|-------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Parameter                                             | Units         | LOR                                                          |                         |                                                         |                                                         |                                                         |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Test                                                  | ted: 6/7/2023           |                                                         |                                                         |                                                         |
| Bromoxynil*                                           | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| Clopyralid*                                           | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| 2,4-DB*                                               | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| 2,6-D*                                                | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| Dicamba*                                              | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| Dinoseb*                                              | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| loxynil*                                              | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| MCPA*                                                 | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| MCPB*                                                 | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| mecoprop*                                             | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| Picloram*                                             | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                          | -                       | <0.5                                                    | -                                                       | -                                                       |
| Triclopyr*                                            | mg/kg         | 0.01                                                         | -                       | <0.01                                                   | -                                                       | -                                                       |

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 29/6/2023

| Arsenic, As  | mg/kg | 1   | 2    | 1    | 1    | 5    |
|--------------|-------|-----|------|------|------|------|
| Cadmium, Cd  | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
| Chromium, Cr | mg/kg | 0.5 | 14   | 1.8  | 2.3  | 12   |
| Copper, Cu   | mg/kg | 0.5 | 1.8  | 6.9  | 5.2  | 5.6  |
| Nickel, Ni   | mg/kg | 0.5 | 2.0  | 0.5  | <0.5 | 1.4  |
| Lead, Pb     | mg/kg | 1   | 10   | 12   | 8    | 17   |
| Zinc, Zn     | mg/kg | 2   | 5    | 18   | 7    | 22   |

### Mercury in Soil Method: AN312 Tested: 29/6/2023

| Mercury | mg/kg | 0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
|---------|-------|------|-------|-------|-------|-------|
|         |       |      |       |       |       |       |

### Moisture Content Method: AN002 Tested: 30/6/2023

| % Moisture | %w/w | 1 | 12.2 | 13.1 | 9.0 | 16.1 |
|------------|------|---|------|------|-----|------|
|            |      |   |      |      |     |      |

### Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 29/6/2023

| Arsenic  | μg/L | 1   | - | - | - | - |
|----------|------|-----|---|---|---|---|
| Cadmium  | µg/L | 0.1 | - | - | - | - |
| Chromium | µg/L | 1   | - | - | - | - |
| Copper   | µg/L | 1   | - | - | - | - |
| Lead     | µg/L | 1   | - | - | - | - |
| Nickel   | µg/L | 1   | - | - | - | - |
| Zinc     | µg/L | 5   | - | - | - | - |

### Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 4/7/2023

| Mercury ma/L 0.0001          |         |      |        |   |   |   |   |
|------------------------------|---------|------|--------|---|---|---|---|
| <b>5 1 1 1 1 1 1 1 1 1 1</b> | Mercury | mg/L | 0.0001 | - | - | - | - |



# SE249904 R0

|                                                            |       | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.021<br>Soil<br>27 Jun 2023<br>Sample 9<br>0.25-0.3 | SE249904.022<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.1-0.2 | SE249904.023<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.3-0.35 | SE249904.024<br>Soil<br>27 Jun 2023<br>QC3 |
|------------------------------------------------------------|-------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|
| Parameter                                                  | Units | LOR                                                          |                                                             |                                                             |                                                              |                                            |
| VOC's in Soil Method: AN433 Tested: 30/6/2023<br>Fumigants |       |                                                              |                                                             |                                                             |                                                              |                                            |
|                                                            |       | 0.1                                                          | -                                                           | -0.1                                                        | _                                                            | _                                          |
| 2,2-dichloropropane                                        | mg/kg | 0.1                                                          |                                                             | <0.1                                                        |                                                              |                                            |
| 1,2-dichloropropane                                        | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| cis-1,3-dichloropropene                                    | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        |                                                              | -                                          |
| trans-1,3-dichloropropene                                  | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,2-dibromoethane (EDB)                                    | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Halogenated Aliphatics                                     |       |                                                              |                                                             |                                                             |                                                              |                                            |
| Dichlorodifluoromethane (CFC-12)                           | mg/kg | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| Chloromethane                                              | mg/kg | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| Vinyl chloride (Chloroethene)                              | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Bromomethane                                               | mg/kg | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| Chloroethane                                               | mg/kg | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| Trichlorofluoromethane                                     | mg/kg | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| 1,1-dichloroethene                                         | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| lodomethane                                                | mg/kg | 5                                                            | -                                                           | <5                                                          | -                                                            | -                                          |
| Dichloromethane (Methylene chloride)                       | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |
| Allyl chloride                                             | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| trans-1,2-dichloroethene                                   | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,1-dichloroethane                                         | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| cis-1,2-dichloroethene                                     | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | _                                          |
| Bromochloromethane                                         | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,2-dichloroethane                                         | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,1,1-trichloroethane                                      | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,1-dichloropropene                                        | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | _                                                            | -                                          |
| Carbon tetrachloride                                       | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        |                                                              | -                                          |
| Dibromomethane                                             | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Trichloroethene (Trichloroethylene, TCE)                   | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        |                                                              | -                                          |
| 1,1,2-trichloroethane                                      | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        |                                                              |                                            |
| 1,3-dichloropropane                                        | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        |                                                              |                                            |
| Tetrachloroethene (Perchloroethylene,PCE)                  | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        |                                                              |                                            |
| 1,1,1,2-tetrachloroethane                                  | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        |                                                              |                                            |
| 1,1,2,2-tetrachloroethane                                  |       | 0.1                                                          | -                                                           | <0.1                                                        |                                                              | -                                          |
| 1,1,2,2-tetrachioroethane                                  | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| trans-1,4-dichloro-2-butene                                | mg/kg | 1                                                            | -                                                           | <0:1                                                        | -                                                            | -                                          |
|                                                            | mg/kg |                                                              | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,2-dibromo-3-chloropropane<br>Hexachlorobutadiene         | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
|                                                            | mg/kg | 0.1                                                          | -                                                           | <b>~</b> 0.1                                                | -                                                            | -                                          |
| Halogenated Aromatics                                      |       |                                                              |                                                             |                                                             |                                                              |                                            |
| Chlorobenzene                                              | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Bromobenzene                                               | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 2-chlorotoluene                                            | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 4-chlorotoluene                                            | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,3-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,4-dichlorobenzene                                        | mg/kg | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
|                                                            |       |                                                              |                                                             |                                                             |                                                              |                                            |

Monocyclic Aromatic Hydrocarbons

1,2-dichlorobenzene

1,2,4-trichlorobenzene

1,2,3-trichlorobenzene

| Benzene                   | mg/kg | 0.1 | - | <0.1 | - | - |
|---------------------------|-------|-----|---|------|---|---|
| Toluene                   | mg/kg | 0.1 | - | <0.1 | - | - |
| Ethylbenzene              | mg/kg | 0.1 | - | <0.1 | - | - |
| m/p-xylene                | mg/kg | 0.2 | - | <0.2 | - | - |
| Styrene (Vinyl benzene)   | mg/kg | 0.1 | - | <0.1 | - | - |
| o-xylene                  | mg/kg | 0.1 | - | <0.1 | - | - |
| Isopropylbenzene (Cumene) | mg/kg | 0.1 | - | <0.1 | - | - |
| n-propylbenzene           | mg/kg | 0.1 | - | <0.1 | - | - |
| 1,3,5-trimethylbenzene    | mg/kg | 0.1 | - | <0.1 | - | - |
|                           |       |     |   |      |   |   |

0.1

0.1

0.1

-

-

-

mg/kg

mg/kg

mg/kg

<0.1

<0.1

<0.1

-

-

-

-

-

-



# SE249904 R0

|                                               |             | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.021<br>Soil<br>27 Jun 2023<br>Sample 9<br>0.25-0.3 | SE249904.022<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.1-0.2 | SE249904.023<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.3-0.35 | SE249904.024<br>Soil<br>27 Jun 2023<br>QC3 |
|-----------------------------------------------|-------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|
| Parameter                                     | Units       | LOR                                                          |                                                             |                                                             |                                                              |                                            |
| VOC's in Soil Method: AN433 Tested: 30/6/2023 | (continued) |                                                              |                                                             |                                                             |                                                              |                                            |
| tert-butylbenzene                             | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 1,2,4-trimethylbenzene                        | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| sec-butylbenzene                              | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| p-isopropyltoluene                            | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| n-butylbenzene                                | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Nitrogenous Compounds                         |             |                                                              |                                                             |                                                             |                                                              |                                            |
| Acrylonitrile                                 | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| 2-nitropropane                                | mg/kg       | 10                                                           | -                                                           | <10                                                         | -                                                            | -                                          |
| Oxygenated Compounds                          |             |                                                              |                                                             |                                                             |                                                              |                                            |
| Acetone (2-propanone)                         | mg/kg       | 10                                                           | -                                                           | <10                                                         | -                                                            | -                                          |
| MtBE (Methyl-tert-butyl ether)                | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Vinyl acetate*                                | mg/kg       | 10                                                           | -                                                           | <10                                                         | -                                                            | -                                          |
| MIBK (4-methyl-2-pentanone)                   | mg/kg       | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| 2-hexanone (MBK)                              | mg/kg       | 5                                                            | -                                                           | <5                                                          | -                                                            | -                                          |
| Polycyclic VOCs                               |             |                                                              |                                                             |                                                             |                                                              |                                            |
| Naphthalene (VOC)*                            | mg/kg       | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Sulphonated Compounds                         |             |                                                              |                                                             |                                                             |                                                              |                                            |
| Carbon disulfide                              | mg/kg       | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |
| Surrogates                                    |             |                                                              |                                                             |                                                             |                                                              |                                            |
| d4-1,2-dichloroethane (Surrogate)             | %           | -                                                            | -                                                           | 85                                                          | -                                                            | -                                          |
| d8-toluene (Surrogate)                        | %           | -                                                            | -                                                           | 78                                                          | -                                                            | -                                          |
| Bromofluorobenzene (Surrogate)<br>Totals      | %           | -                                                            | -                                                           | 87                                                          | -                                                            | -                                          |
|                                               |             |                                                              |                                                             |                                                             |                                                              | ]                                          |
| Total Other Chlorinated Hydrocarbons VIC EPA* | mg/kg       | 1.8                                                          | -                                                           | <1.8                                                        | -                                                            | -                                          |
| Total Chlorinated Hydrocarbons VIC EPA*       | mg/kg       | 1.8                                                          | -                                                           | <1.8                                                        | -                                                            | -                                          |
| Total BTEX*                                   | mg/kg       | 0.6                                                          | -                                                           | <0.6                                                        | -                                                            | -                                          |
| Total Volatile Chlorinated Hydrocarbons*      | mg/kg       | 3                                                            | -                                                           | <3.0                                                        | -                                                            | -                                          |
| Total VOC*                                    | mg/kg       | 24                                                           | -                                                           | <24                                                         | -                                                            | -                                          |
| Total Xylenes*                                | mg/kg       | 0.3                                                          | -                                                           | <0.3                                                        | -                                                            | -                                          |



# SE249904 R0

|                                                   |            | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.021<br>Soil<br>27 Jun 2023<br>Sample 9<br>0.25-0.3 | SE249904.022<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.1-0.2 | SE249904.023<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.3-0.35 | SE249904.024<br>Soil<br>27 Jun 2023<br>QC3 |
|---------------------------------------------------|------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|
| Parameter                                         | Units      | LOR                                                          |                                                             |                                                             |                                                              |                                            |
| VOC's in Soil Method: AN433 Tested: 30/6/2023     | continued) |                                                              |                                                             |                                                             |                                                              |                                            |
| Trihalomethanes                                   |            |                                                              |                                                             |                                                             |                                                              |                                            |
| Chloroform (THM)                                  | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Bromodichloromethane (THM)                        | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Dibromochloromethane (THM)                        | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Bromoform (THM)                                   | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| OC Pesticides in Soil Method: AN420 Tested: 4/7/2 | 2023       | · · ·                                                        |                                                             |                                                             |                                                              |                                            |
| Alpha BHC                                         | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Hexachlorobenzene (HCB)                           | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Beta BHC                                          | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Lindane (gamma BHC)                               | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Delta BHC                                         | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Heptachlor                                        | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Aldrin                                            | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Isodrin                                           | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Heptachlor epoxide                                | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Gamma Chlordane                                   | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Alpha Chlordane                                   | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Alpha Endosulfan                                  | mg/kg      | 0.2                                                          | -                                                           | <0.2                                                        | -                                                            | -                                          |
| o,p'-DDE*                                         | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| p,p'-DDE                                          | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Dieldrin                                          | mg/kg      | 0.2                                                          | -                                                           | <0.2                                                        | -                                                            | -                                          |
| Endrin                                            | mg/kg      | 0.2                                                          | -                                                           | <0.2                                                        | -                                                            | -                                          |
| Beta Endosulfan                                   | mg/kg      | 0.2                                                          | -                                                           | <0.2                                                        | -                                                            | -                                          |
| o,p'-DDD*                                         | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| p,p'-DDD                                          | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Endrin aldehyde                                   | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Endosulfan sulphate                               | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| o,p'-DDT*                                         | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| p,p'-DDT                                          | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Endrin ketone                                     | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Methoxychlor                                      | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Mirex                                             | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| trans-Nonachlor                                   | mg/kg      | 0.1                                                          | -                                                           | <0.1                                                        | -                                                            | -                                          |
| Total CLP OC Pesticides                           | mg/kg      | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| Total OC VIC EPA                                  | mg/kg      | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |
| Surrogates                                        |            |                                                              |                                                             |                                                             |                                                              |                                            |
| Tetrachloro-m-xylene (TCMX) (Surrogate)           | %          | -                                                            | -                                                           | 83                                                          | -                                                            | -                                          |

### OP Pesticides in Soil Method: AN420 Tested: 5/7/2023

| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | - | <0.2 | - | - |
|-----------------------------------|-------|-----|---|------|---|---|
| Bromophos Ethyl                   | mg/kg | 0.2 | - | <0.2 | - | - |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | - | <0.2 | - | - |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | - | <0.5 | - | - |
| Dichlorvos                        | mg/kg | 0.5 | - | <0.5 | - | - |
| Dimethoate                        | mg/kg | 0.5 | - | <0.5 | - | - |
| Ethion                            | mg/kg | 0.2 | - | <0.2 | - | - |
| Fenitrothion                      | mg/kg | 0.2 | - | <0.2 | - | - |
| Malathion                         | mg/kg | 0.2 | - | <0.2 | - | - |
| Methidathion                      | mg/kg | 0.5 | - | <0.5 | - | - |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | - | <0.2 | - | - |
| Total OP Pesticides*              | mg/kg | 1.7 | - | <1.7 | - | - |

Surrogates

| 2-fluorobiphenyl (Surrogate) | % | - | - | 102 | - | - |
|------------------------------|---|---|---|-----|---|---|
| d14-p-terphenyl (Surrogate)  | % | - | - | 100 | - | - |



# SE249904 R0

|                                                                            |       | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | SE249904.021<br>Soil<br>27 Jun 2023<br>Sample 9<br>0.25-0.3 | SE249904.022<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.1-0.2 | SE249904.023<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.3-0.35 | SE249904.024<br>Soil<br>27 Jun 2023<br>QC3 |  |  |  |
|----------------------------------------------------------------------------|-------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|--|--|--|
| Parameter                                                                  | Units | LOR                                                          |                                                             |                                                             |                                                              |                                            |  |  |  |
| Triazines in Soil Method: AN420 Tested: 5/7/2023                           |       |                                                              |                                                             |                                                             |                                                              |                                            |  |  |  |
| Simazine                                                                   | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Atrazine                                                                   | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Propazine                                                                  | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Terbuthylazine                                                             | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Metribuzin                                                                 | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Prometryn                                                                  | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Terbutryn                                                                  | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Cyanazine                                                                  | mg/kg | 0.5                                                          | -                                                           | <0.5                                                        | -                                                            | -                                          |  |  |  |
| Hexazinone                                                                 | mg/kg | 1                                                            | -                                                           | <1                                                          | -                                                            | -                                          |  |  |  |
| Surrogates                                                                 |       |                                                              |                                                             |                                                             |                                                              |                                            |  |  |  |
| d14-p-terphenyl (Surrogate)                                                | %     | -                                                            | -                                                           | 90                                                          | -                                                            | -                                          |  |  |  |
| Synthetic Pyrethroids in Soil Method: AN420 Tested: 5/7/2023<br>Surrogates |       |                                                              |                                                             |                                                             |                                                              |                                            |  |  |  |
| d14-p-terphenyl (Surrogate)                                                | %     | -                                                            | -                                                           | 94                                                          | -                                                            | -                                          |  |  |  |
| Synthetic Pyrethroids                                                      |       |                                                              |                                                             |                                                             |                                                              |                                            |  |  |  |

| Bifenthrin       | mg/kg | 0.5 | - | <0.5 | - | - |
|------------------|-------|-----|---|------|---|---|
| cis-Permethrin   | mg/kg | 0.5 | - | <0.5 | - | - |
| trans-Permethrin | mg/kg | 0.5 | - | <0.5 | - | - |
| Cyfluthrin       | mg/kg | 1   | - | <1   | - | - |
| Cypermethrin     | mg/kg | 1   | - | <1   | - | - |
| Esfenvalerate    | mg/kg | 0.5 | - | <0.5 | - | - |
| Deltamethrin     | mg/kg | 0.5 | - | <0.5 | - | - |

### Carbamates in Soil Method: AN420 Tested: 5/7/2023

| bamates |  |
|---------|--|
|         |  |

| Carbofuran                  | mg/kg | 0.5 | - | <0.5 | - | - |
|-----------------------------|-------|-----|---|------|---|---|
| Carbaryl                    | mg/kg | 0.5 | - | <0.5 | - | - |
| Surrogates                  |       |     |   |      |   |   |
| d14-p-terphenyl (Surrogate) | %     | -   | - | 94   | - | - |



# SE249904 R0

| Parameter                                             | Units         | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name<br>LOR | SE249904.021<br>Soil<br>27 Jun 2023<br>Sample 9<br>0.25-0.3 | SE249904.022<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.1-0.2 | SE249904.023<br>Soil<br>27 Jun 2023<br>Sample 10<br>0.3-0.35 | SE249904.024<br>Soil<br>27 Jun 2023<br>QC3 |
|-------------------------------------------------------|---------------|---------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Teste                                                        | ed: 6/7/2023                                                |                                                             |                                                              |                                            |
| Bromoxynil*                                           | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| Clopyralid*                                           | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| 2,4-DB*                                               | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| 2,6-D*                                                | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| Dicamba*                                              | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| Dinoseb*                                              | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| loxynil*                                              | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| MCPA*                                                 | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| MCPB*                                                 | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| mecoprop*                                             | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| Picloram*                                             | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                                 | -                                                           | <0.5                                                        | -                                                            | -                                          |
| Triclopyr*                                            | mg/kg         | 0.01                                                                | -                                                           | <0.01                                                       | -                                                            | -                                          |

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 29/6/2023

| Arsenic, As  | mg/kg | 1   | 10   | 4    | 4    | 3    |
|--------------|-------|-----|------|------|------|------|
| Cadmium, Cd  | mg/kg | 0.3 | <0.3 | <0.3 | <0.3 | <0.3 |
| Chromium, Cr | mg/kg | 0.5 | 18   | 8.8  | 9.0  | 11   |
| Copper, Cu   | mg/kg | 0.5 | 3.9  | 4.0  | 2.0  | <0.5 |
| Nickel, Ni   | mg/kg | 0.5 | 3.5  | 1.2  | 1.0  | 1.5  |
| Lead, Pb     | mg/kg | 1   | 14   | 11   | 9    | 12   |
| Zinc, Zn     | mg/kg | 2   | 16   | 20   | 4    | 6    |

### Mercury in Soil Method: AN312 Tested: 29/6/2023

| Mercury | mg/kg | 0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
|---------|-------|------|-------|-------|-------|-------|
|         |       |      |       |       |       |       |

### Moisture Content Method: AN002 Tested: 30/6/2023

|  | % | Moisture | %w/w | 1 | 14.3 | 18.1 | 13.7 | 9.0 |
|--|---|----------|------|---|------|------|------|-----|
|--|---|----------|------|---|------|------|------|-----|

### Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 29/6/2023

| Arsenic  | μg/L | 1   | - | - | - | - |
|----------|------|-----|---|---|---|---|
| Cadmium  | µg/L | 0.1 | - | - | - | - |
| Chromium | µg/L | 1   | - | - | - | - |
| Copper   | µg/L | 1   | - | - | - | - |
| Lead     | µg/L | 1   | - | - | - | - |
| Nickel   | µg/L | 1   | - | - | - | - |
| Zinc     | µg/L | 5   | - | - | - | - |

### Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 4/7/2023

| Mercury | mg/L | 0.0001 | - | - | - | - |
|---------|------|--------|---|---|---|---|
|         |      |        |   |   |   |   |



### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage.* Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### Carbamates in Soil Method: ME-(AU)-[ENV]AN420

| Carbamates |           |       |     |      |          |           |
|------------|-----------|-------|-----|------|----------|-----------|
| Parameter  | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|            | Reference |       |     |      |          | %Recovery |
| Carbofuran | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | 105%      |
| Carbaryl   | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |

Surrogates

| Parameter                   | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|-----------------------------|-----------|-------|-----|------|----------|-----------|
|                             | Reference |       |     |      |          | %Recovery |
| d14-p-terphenyl (Surrogate) | LB284020  | %     | -   | 106% | 2%       | 90%       |

### Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

| Parameter | QC        | Units | LOR    | MB      | DUP %RPD | LCS       | MS        |
|-----------|-----------|-------|--------|---------|----------|-----------|-----------|
|           | Reference |       |        |         |          | %Recovery | %Recovery |
| Mercury   | LB284151  | mg/L  | 0.0001 | <0.0001 | 0%       | 101%      | 89%       |

### Mercury in Soil Method: ME-(AU)-[ENV]AN312

| Parameter | QC        | Units | LOR  | MB    | DUP %RPD | LCS       | MS        |
|-----------|-----------|-------|------|-------|----------|-----------|-----------|
|           | Reference |       |      |       |          | %Recovery | %Recovery |
| Mercury   | LB284032  | mg/kg | 0.05 | <0.05 | 0%       | 115%      | 106%      |
|           | LB284033  | mg/kg | 0.05 | <0.05 | 0%       | 95%       | 104%      |

### Moisture Content Method: ME-(AU)-[ENV]AN002

| Parameter  | QC<br>Reference | Units | LOR | DUP %RPD |
|------------|-----------------|-------|-----|----------|
| % Moisture | LB284094        | %w/w  | 1   | 12 - 35% |
|            | LB284095        | %w/w  | 1   | 1 - 2%   |

### OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

| Parameter               | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|-------------------------|-----------------|-------|-----|------|----------|------------------|-----------------|
| Alpha BHC               | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Hexachlorobenzene (HCB) | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Beta BHC                | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Lindane (gamma BHC)     | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Delta BHC               | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | 90%              | 100%            |
| Heptachlor              | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | 86%              | 105%            |
| Aldrin                  | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | 87%              | 100%            |
| Isodrin                 | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Heptachlor epoxide      | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Gamma Chlordane         | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Alpha Chlordane         | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Alpha Endosulfan        | LB284019        | mg/kg | 0.2 | <0.2 | 0%       | NA               | NA              |
| o,p'-DDE*               | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| p,p'-DDE                | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Dieldrin                | LB284019        | mg/kg | 0.2 | <0.2 | 0%       | 69%              | 74%             |
| Endrin                  | LB284019        | mg/kg | 0.2 | <0.2 | 0%       | 66%              | 104%            |
| Beta Endosulfan         | LB284019        | mg/kg | 0.2 | <0.2 | 0%       | NA               | NA              |
| o,p'-DDD*               | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| p,p'-DDD                | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Endrin aldehyde         | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Endosulfan sulphate     | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| o,p'-DDT*               | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| p,p'-DDT                | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | 105%             | 109%            |
| Endrin ketone           | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Methoxychlor            | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Mirex                   | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| trans-Nonachlor         | LB284019        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Total CLP OC Pesticides | LB284019        | mg/kg | 1   | <1   | 0%       | NA               | NA              |
| Total OC VIC EPA        | LB284019        | mg/kg | 1   | <1   | 0%       | NA               | NA              |



lecov

90%

### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420 (continued)

| Surrogates                              |           |       |     |     |          |           |           |
|-----------------------------------------|-----------|-------|-----|-----|----------|-----------|-----------|
| Parameter                               | QC        | Units | LOR | MB  | DUP %RPD | LCS       | MS        |
|                                         | Reference |       |     |     |          | %Recovery | %Recovery |
| Tetrachloro-m-xylene (TCMX) (Surrogate) | LB284019  | %     | -   | 83% | 2 - 5%   | 86%       | 74%       |

### OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

| Parameter                         | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|-----------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                                   | Reference |       |     |      |          | %Recovery | %Recovery |
| Azinphos-methyl (Guthion)         | LB284019  | mg/kg | 0.2 | <0.2 | 0%       | NA        | NA        |
| Bromophos Ethyl                   | LB284019  | mg/kg | 0.2 | <0.2 | 0%       | NA        | NA        |
| Chlorpyrifos (Chlorpyrifos Ethyl) | LB284019  | mg/kg | 0.2 | <0.2 | 0%       | 81%       | 109%      |
| Diazinon (Dimpylate)              | LB284019  | mg/kg | 0.5 | <0.5 | 0%       | 85%       | 112%      |
| Dichlorvos                        | LB284019  | mg/kg | 0.5 | <0.5 | 0%       | 67%       | 64%       |
| Dimethoate                        | LB284019  | mg/kg | 0.5 | <0.5 | 0%       | NA        | NA        |
| Ethion                            | LB284019  | mg/kg | 0.2 | <0.2 | 0%       | 69%       | 93%       |
| Fenitrothion                      | LB284019  | mg/kg | 0.2 | <0.2 | 0%       | NA        | NA        |
| Malathion                         | LB284019  | mg/kg | 0.2 | <0.2 | 0%       | NA        | NA        |
| Methidathion                      | LB284019  | mg/kg | 0.5 | <0.5 | 0%       | NA        | NA        |
| Parathion-ethyl (Parathion)       | LB284019  | mg/kg | 0.2 | <0.2 | 0%       | NA        | NA        |
| Total OP Pesticides*              | LB284019  | mg/kg | 1.7 | <1.7 | 0%       | NA        | NA        |

Surrogates

| Parameter                    | QC        | Units | LOR | MB  | DUP %RPD | LCS       | MS        |
|------------------------------|-----------|-------|-----|-----|----------|-----------|-----------|
|                              | Reference |       |     |     |          | %Recovery | %Recovery |
| 2-fluorobiphenyl (Surrogate) | LB284019  | %     | -   | 95% | 1 - 13%  | 105%      | 101%      |
| d14-p-terphenyl (Surrogate)  | LB284019  | %     | -   | 98% | 2 - 9%   | 100%      | 98%       |

### Synthetic Pyrethroids in Soil Method: ME-(AU)-[ENV]AN420

|     | Surrogates                  |           |       |     |      |          |    |
|-----|-----------------------------|-----------|-------|-----|------|----------|----|
|     | Parameter                   | QC        | Units | LOR | MB   | DUP %RPD |    |
|     |                             | Reference |       |     |      |          | %R |
| - 1 | d14-p-terphenyl (Surrogate) | LB284020  | %     | -   | 106% | 2%       |    |

Synthetic Pyrethroids

| Parameter        | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|------------------|-----------|-------|-----|------|----------|-----------|
|                  | Reference |       |     |      |          | %Recovery |
| Bifenthrin       | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | 90%       |
| cis-Permethrin   | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |
| trans-Permethrin | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |
| Cyfluthrin       | LB284020  | mg/kg | 1   | <1   | 0%       | NA        |
| Cypermethrin     | LB284020  | mg/kg | 1   | <1   | 0%       | NA        |
| Esfenvalerate    | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |
| Deltamethrin     | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |



### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

| Parameter    | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|--------------|-----------|-------|-----|------|----------|-----------|-----------|
|              | Reference |       |     |      |          | %Recovery | %Recovery |
| Arsenic, As  | LB284026  | mg/kg | 1   | <1   | 19 - 36% | 109%      | 91%       |
|              | LB284027  | mg/kg | 1   | <1   | 3%       | 106%      | 98%       |
| Cadmium, Cd  | LB284026  | mg/kg | 0.3 | <0.3 | 0%       | 86%       | 81%       |
|              | LB284027  | mg/kg | 0.3 | <0.3 | 0%       | 83%       | 90%       |
| Chromium, Cr | LB284026  | mg/kg | 0.5 | <0.5 | 29 - 30% | 108%      | 86%       |
|              | LB284027  | mg/kg | 0.5 | <0.5 | 0 - 30%  | 105%      | 103%      |
| Copper, Cu   | LB284026  | mg/kg | 0.5 | <0.5 | 4 - 12%  | 109%      | 89%       |
|              | LB284027  | mg/kg | 0.5 | <0.5 | 0 - 9%   | 107%      | 104%      |
| Nickel, Ni   | LB284026  | mg/kg | 0.5 | <0.5 | 23 - 40% | 103%      | 85%       |
|              | LB284027  | mg/kg | 0.5 | <0.5 | 3 - 13%  | 100%      | 102%      |
| Lead, Pb     | LB284026  | mg/kg | 1   | <1   | 11 - 16% | 103%      | 87%       |
|              | LB284027  | mg/kg | 1   | <1   | 2 - 17%  | 101%      | 96%       |
| Zinc, Zn     | LB284026  | mg/kg | 2   | <2   | 4 - 11%  | 102%      | 90%       |
|              | LB284027  | mg/kg | 2   | <2   | 0 - 4%   | 101%      | 101%      |

### Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

| Parameter | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|-----------|-----------------|-------|-----|------|----------|------------------|-----------------|
|           | Reference       |       |     |      |          | %Recovery        | %Recovery       |
| Arsenic   | LB283919        | µg/L  | 1   | <1   | 0%       | 106%             |                 |
| Cadmium   | LB283919        | µg/L  | 0.1 | <0.1 | 0 - 24%  | 105%             |                 |
| Chromium  | LB283919        | µg/L  | 1   | <1   | 0%       | 97%              |                 |
| Copper    | LB283919        | µg/L  | 1   | <1   | 0 - 58%  | 97%              |                 |
| Lead      | LB283919        | µg/L  | 1   | <1   | 0%       | 98%              | 104%            |
| Nickel    | LB283919        | µg/L  | 1   | <1   | 0%       | 104%             |                 |
| Zinc      | LB283919        | μg/L  | 5   | <5   | 0 - 2%   | 97%              |                 |

### Triazines in Soil Method: ME-(AU)-[ENV]AN420

| Parameter      | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|----------------|-----------|-------|-----|------|----------|-----------|
|                | Reference |       |     |      |          | %Recovery |
| Simazine       | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |
| Atrazine       | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | 82%       |
| Propazine      | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | 77%       |
| Terbuthylazine | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | 94%       |
| Metribuzin     | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |
| Prometryn      | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | 79%       |
| Terbutryn      | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | 80%       |
| Cyanazine      | LB284020  | mg/kg | 0.5 | <0.5 | 0%       | NA        |
| Hexazinone     | LB284020  | mg/kg | 1   | <1   | 0%       | NA        |

Surrogates

| Parameter                   | QC        | Units | LOR | MB   | DUP %RPD | LCS       |
|-----------------------------|-----------|-------|-----|------|----------|-----------|
|                             | Reference |       |     |      |          | %Recovery |
| d14-p-terphenyl (Surrogate) | LB284020  | %     | -   | 102% | 2%       | 86%       |



MS

### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### VOC's in Soil Method: ME-(AU)-[ENV]AN433

|     | Fumigants           |           |       |     |      |          |          |
|-----|---------------------|-----------|-------|-----|------|----------|----------|
|     | Parameter           | QC        | Units | LOR | MB   | DUP %RPD | LCS      |
|     |                     | Reference |       |     |      |          | %Recover |
|     | 2,2-dichloropropane | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA       |
| - 1 |                     |           |       |     |      |          |          |

|                           | Reference |       |     |      |    | %Recovery | %Recovery |
|---------------------------|-----------|-------|-----|------|----|-----------|-----------|
| 2,2-dichloropropane       | LB283872  | mg/kg | 0.1 | <0.1 | 0% | NA        | NA        |
| 1,2-dichloropropane       | LB283872  | mg/kg | 0.1 | <0.1 | 0% | NA        | NA        |
| cis-1,3-dichloropropene   | LB283872  | mg/kg | 0.1 | <0.1 | 0% | NA        | NA        |
| trans-1,3-dichloropropene | LB283872  | mg/kg | 0.1 | <0.1 | 0% | NA        | NA        |
| 1,2-dibromoethane (EDB)   | LB283872  | mg/kg | 0.1 | <0.1 | 0% | NA        | NA        |

Halogenated Aliphatics

| Parameter                                 | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|-------------------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                                           | Reference |       |     | 1    | 1        | %Recovery | %Recovery |
| Dichlorodifluoromethane (CFC-12)          | LB283872  | mg/kg | 1   | <1   | 0%       | NA        | NA        |
| Chloromethane                             | LB283872  | mg/kg | 1   | <1   | 0%       | NA        | NA        |
| Vinyl chloride (Chloroethene)             | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Bromomethane                              | LB283872  | mg/kg | 1   | <1   | 0%       | NA        | NA        |
| Chloroethane                              | LB283872  | mg/kg | 1   | <1   | 0%       | NA        | NA        |
| Trichlorofluoromethane                    | LB283872  | mg/kg | 1   | <1   | 0%       | NA        | NA        |
| 1,1-dichloroethene                        | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | 81%       | 79%       |
| Iodomethane                               | LB283872  | mg/kg | 5   | <5   | 0%       | NA        | NA        |
| Dichloromethane (Methylene chloride)      | LB283872  | mg/kg | 0.5 | <0.5 | 0%       | NA        | NA        |
| Allyl chloride                            | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| trans-1,2-dichloroethene                  | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 1,1-dichloroethane                        | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| cis-1,2-dichloroethene                    | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Bromochloromethane                        | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 1,2-dichloroethane                        | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | 95%       | 92%       |
| 1,1,1-trichloroethane                     | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 1,1-dichloropropene                       | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Carbon tetrachloride                      | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Dibromomethane                            | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Trichloroethene (Trichloroethylene,TCE)   | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | 102%      | 105%      |
| 1,1,2-trichloroethane                     | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 1,3-dichloropropane                       | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Tetrachloroethene (Perchloroethylene,PCE) | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 1,1,1,2-tetrachloroethane                 | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 1,1,2,2-tetrachloroethane                 | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 1,2,3-trichloropropane                    | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| trans-1,4-dichloro-2-butene               | LB283872  | mg/kg | 1   | <1   | 0%       | NA        | NA        |
| 1,2-dibromo-3-chloropropane               | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Hexachlorobutadiene                       | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |

Halogenated Aromatics

| Parameter              | QC<br>Reference | Units   | LOR | MB   | DUP %RPD | LCS               | MS               |
|------------------------|-----------------|---------|-----|------|----------|-------------------|------------------|
| Chlorobenzene          | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | %Recovery<br>102% | %Recovery<br>95% |
|                        | LD203072        | iiig/kg | 0.1 | -0.1 | 0 /0     | 102 /0            | 3376             |
| Bromobenzene           | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |
| 2-chlorotoluene        | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |
| 4-chlorotoluene        | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |
| 1,3-dichlorobenzene    | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |
| 1,4-dichlorobenzene    | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |
| 1,2-dichlorobenzene    | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |
| 1,2,4-trichlorobenzene | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |
| 1,2,3-trichlorobenzene | LB283872        | mg/kg   | 0.1 | <0.1 | 0%       | NA                | NA               |

Monocyclic Aromatic Hydrocarbons



### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### VOC's in Soil Method: ME-(AU)-[ENV]AN433 (continued)

| Parameter                 | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recoverv |
|---------------------------|-----------------|-------|-----|------|----------|------------------|-----------------|
| Benzene                   | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | 109%             | 101%            |
| Toluene                   | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | 113%             | 104%            |
| Ethylbenzene              | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | 107%             | 95%             |
| m/p-xylene                | LB283872        | mg/kg | 0.2 | <0.2 | 0%       | 105%             | 92%             |
| Styrene (Vinyl benzene)   | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| o-xylene                  | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | 106%             | 93%             |
| Isopropylbenzene (Cumene) | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| n-propylbenzene           | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| 1,3,5-trimethylbenzene    | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| tert-butylbenzene         | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| 1,2,4-trimethylbenzene    | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| sec-butylbenzene          | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| p-isopropyltoluene        | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| n-butylbenzene            | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |

### Nitrogenous Compounds

| Parameter      | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|----------------|-----------|-------|-----|------|----------|-----------|-----------|
|                | Reference |       |     |      |          | %Recovery | %Recovery |
| Acrylonitrile  | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| 2-nitropropane | LB283872  | mg/kg | 10  | <10  | 0%       | NA        | NA        |

### Oxygenated Compounds

| Parameter                      | QC<br>Reference | Units | LOR | MB   | DUP %RPD | LCS<br>%Recovery | MS<br>%Recovery |
|--------------------------------|-----------------|-------|-----|------|----------|------------------|-----------------|
| Acetone (2-propanone)          | LB283872        | mg/kg | 10  | <10  | 0%       | NA               | NA              |
| MtBE (Methyl-tert-butyl ether) | LB283872        | mg/kg | 0.1 | <0.1 | 0%       | NA               | NA              |
| Vinyl acetate*                 | LB283872        | mg/kg | 10  | <10  | 0%       | NA               | NA              |
| MIBK (4-methyl-2-pentanone)    | LB283872        | mg/kg | 1   | <1   | 0%       | NA               | NA              |
| 2-hexanone (MBK)               | LB283872        | mg/kg | 5   | <5   | 0%       | NA               | NA              |

### Polycyclic VOCs

| Parameter          | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|--------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                    | Reference |       |     |      |          | %Recovery | %Recovery |
| Naphthalene (VOC)* | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |

### Sulphonated Compounds

| Parameter        | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                  | Reference |       |     |      |          | %Recovery | %Recovery |
| Carbon disulfide | LB283872  | mg/kg | 0.5 | <0.5 | 0%       | NA        | NA        |

### Surrogates

Totals

| Parameter                         | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|-----------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                                   | Reference |       |     |      |          | %Recovery | %Recovery |
| d4-1,2-dichloroethane (Surrogate) | LB283872  | %     | -   | 97%  | 4 - 10%  | 120%      | 113%      |
| d8-toluene (Surrogate)            | LB283872  | %     | -   | 110% | 16 - 28% | 115%      | 99%       |
| Bromofluorobenzene (Surrogate)    | LB283872  | %     | -   | 92%  | 1 - 19%  | 117%      | 101%      |

| TOLAIS                                        |           |       |     |      |          |           |           |
|-----------------------------------------------|-----------|-------|-----|------|----------|-----------|-----------|
| Parameter                                     | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|                                               | Reference |       |     |      |          | %Recovery | %Recovery |
| Total Other Chlorinated Hydrocarbons VIC EPA* | LB283872  | mg/kg | 1.8 | <1.8 | 0%       | NA        | NA        |
| Total Chlorinated Hydrocarbons VIC EPA*       | LB283872  | mg/kg | 1.8 | <1.8 | 0%       | NA        | NA        |
| Total BTEX*                                   | LB283872  | mg/kg | 0.6 | <0.6 | 0%       | NA        | NA        |
| Total Volatile Chlorinated Hydrocarbons*      | LB283872  | mg/kg | 3   | <3.0 | 0%       | NA        | NA        |
| Total VOC*                                    | LB283872  | mg/kg | 24  | <24  | 0%       | NA        | NA        |
| Total Xylenes*                                | LB283872  | mg/kg | 0.3 | <0.3 | 0%       | NA        | NA        |
| Tuile a la sua Ala ana a                      |           |       |     |      |          |           |           |

Trihalomethanes



### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### VOC's in Soil Method: ME-(AU)-[ENV]AN433 (continued)

| Parameter                  | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        |
|----------------------------|-----------|-------|-----|------|----------|-----------|-----------|
|                            | Reference |       |     |      |          | %Recovery | %Recovery |
| Chloroform (THM)           | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | 100%      | 97%       |
| Bromodichloromethane (THM) | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Dibromochloromethane (THM) | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |
| Bromoform (THM)            | LB283872  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        |



# METHOD SUMMARY

| - METHOD           | - METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AN002              | The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.                                                                                                                                                                                                                                         |
| AN020              | Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AN040              | A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by AAS or ICP as per USEPA Method 200.8.                                                                                                                                                                                                                                                                                                                                   |
| AN040/AN320        | A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.                                                                                                                                                                                                                                                                    |
| AN311(Perth)/AN312 | Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.                                                                                                                                                                       |
| AN312              | Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid,<br>mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury<br>vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser.<br>Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA<br>3112/3500                                                                                  |
| AN318              | Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AN420              | SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                                                                                                                                                                                                          |
| AN420              | SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                                                                                                                                                                                                          |
| AN433              | VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.                                                                                                                                                                   |
| MA-1569            | This method is intended for the analysis of a diverse range of pesticides and herbicides by Liquid<br>Chromatography using a Tandem Mass Spectrometry detector (LC-MS/MS). Due to the diverse nature of the<br>analytes covered in this method each analyte requires its own analytical acquisition method thus the sample is<br>run multiple times according to the analyte list requested.<br>Soil and solid samples are extracted with ACN and extracts are filtered then directly injected onto LC -MS/MS<br>using selective ion monitoring. |



SE249904 R0



FOOTNOTES .

### IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting î↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance ++ Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte \*\*\* Indicates that both \* and \*\* apply. NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.





| ontact       | Huong Crawford                  | Manager       | Adam Atkinson                      |
|--------------|---------------------------------|---------------|------------------------------------|
| Client       | SGS I&E SYDNEY                  | Laboratory    | SGS Melbourne EH&S                 |
| Address      | Unit 16, 33 Maddox Street       | Address       | 10/585 Blackburn Road              |
|              | Alexandria                      |               | Notting Hill Victoria 3168         |
|              | NSW 2015                        |               |                                    |
| Telephone    | 02 8594 0400                    | Telephone     | +61395743200                       |
| acsimile     | 02 8594 0499                    | Facsimile     | +61395743399                       |
| Email        | au.environmental.sydney@sgs.com | Email         | Au.SampleReceipt.Melbourne@sgs.com |
| Project      | MES2167                         | SGS Reference | ME335307 R0                        |
| Order Number | SE249904                        | Date Received | 30 Jun 2023                        |
| Samples      | 24                              | Date Reported | 06 Jul 2023                        |

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562 (14420/22793/24472).

SIGNATORIES -

Wei Lu

Wei LU2 Laboratory Technician

> SGS Australia Pty Ltd ABN 44 000 964 278

Bldg 10, 585 Blackburn Rd Notting Hill VIC www.sgs.com.au



# ME335307 R0

-

-

|                                                        |                | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME335307.001<br>Soil<br>27 Jun 2023<br>SE249904.001 | ME335307.002<br>Soil<br>27 Jun 2023<br>SE249904.002 | ME335307.003<br>Soil<br>27 Jun 2023<br>SE249904.003 | ME335307.004<br>Soil<br>27 Jun 2023<br>SE249904.004 |
|--------------------------------------------------------|----------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                              | Units          | LOR                                                          |                                                     |                                                     |                                                     |                                                     |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.5 | L.01 Method: I | MA1569 Teste                                                 | d: 5/7/2023                                         |                                                     |                                                     |                                                     |
| Bromoxynil*                                            | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 4-Chlorophenocy acetic acid (4-CPA)*                   | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Clopyralid*                                            | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*             | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| 2,4-DB*                                                | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 2,6-D*                                                 | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Dicamba*                                               | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| Dichloroprop / Dichlorprop-P*                          | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| Dinoseb*                                               | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Fluroxypyr*                                            | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| loxynil*                                               | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| MCPA*                                                  | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| MCPB*                                                  | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| mecoprop*                                              | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| Picloram*                                              | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| 2,4,5-T*                                               | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| 2,4,5-TP*                                              | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 2,4,6-Trichlorophenoxy acetic acid*                    | mg/kg          | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Triclopyr*                                             | mg/kg          | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |

1

%w/w

17.1

# Moisture Content Method: AN002 Tested: 3/7/2023



# ME335307 R0

-

-

|                                                       |                 | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME335307.005<br>Soil<br>27 Jun 2023<br>SE249904.005 | ME335307.006<br>Soil<br>27 Jun 2023<br>SE249904.006 | ME335307.007<br>Soil<br>27 Jun 2023<br>SE249904.007 | ME335307.008<br>Soil<br>27 Jun 2023<br>SE249904.008 |
|-------------------------------------------------------|-----------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                             | Units           | LOR                                                          |                                                     |                                                     |                                                     |                                                     |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: M | MA1569 Teste                                                 | ed: 5/7/2023                                        |                                                     |                                                     |                                                     |
| Bromoxynil*                                           | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 4-Chlorophenocy acetic acid (4-CPA) <sup>★</sup>      | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Clopyralid*                                           | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| 2,4-DB*                                               | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 2,6-D*                                                | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Dicamba*                                              | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| Dichloroprop / Dichlorprop-P*                         | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| Dinoseb*                                              | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Fluroxypyr*                                           | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| loxynil*                                              | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| MCPA*                                                 | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| MCPB*                                                 | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| mecoprop*                                             | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| Picloram*                                             | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| 2,4,5-T*                                              | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |
| 2,4,5-TP*                                             | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg           | 0.5                                                          | <0.5                                                | -                                                   | -                                                   | -                                                   |
| Triclopyr*                                            | mg/kg           | 0.01                                                         | <0.01                                               | -                                                   | -                                                   | -                                                   |

1

%w/w

22.2

# Moisture Content Method: AN002 Tested: 3/7/2023



# ME335307 R0

-

-

|                                                       |               | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME335307.009<br>Soil<br>27 Jun 2023<br>SE249904.009 | ME335307.010<br>Soil<br>27 Jun 2023<br>SE249904.010 | ME335307.011<br>Soil<br>27 Jun 2023<br>SE249904.011 | ME335307.012<br>Soil<br>27 Jun 2023<br>SE249904.012 |
|-------------------------------------------------------|---------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                             | Units         | LOR                                                          |                                                     |                                                     |                                                     |                                                     |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Teste                                                 | ed: 6/7/2023                                        |                                                     |                                                     |                                                     |
| Bromoxynil*                                           | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| Clopyralid*                                           | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| 2,4-DB*                                               | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| 2,6-D*                                                | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| Dicamba*                                              | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| Dinoseb*                                              | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| loxynil*                                              | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| MCPA*                                                 | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| MCPB*                                                 | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| mecoprop*                                             | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| Picloram*                                             | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                          | -                                                   | -                                                   | -                                                   | -                                                   |
| Triclopyr*                                            | mg/kg         | 0.01                                                         | -                                                   | -                                                   | -                                                   | -                                                   |

1

-

%w/w

# Moisture Content Method: AN002 Tested: 5/7/2023



# ME335307 R0

-

|                                                       |               | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME335307.013<br>Soil<br>27 Jun 2023<br>SE249904.013 | ME335307.014<br>Soil<br>27 Jun 2023<br>SE249904.014 | ME335307.015<br>Soil<br>27 Jun 2023<br>SE249904.015 | ME335307.016<br>Soil<br>27 Jun 2023<br>SE249904.016 |
|-------------------------------------------------------|---------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                             | Units         | LOR                                                          |                                                     |                                                     |                                                     |                                                     |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Teste                                                 | ed: 6/7/2023                                        |                                                     |                                                     |                                                     |
| Bromoxynil*                                           | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Clopyralid*                                           | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| 2,4-DB*                                               | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 2,6-D*                                                | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Dicamba*                                              | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| Dinoseb*                                              | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| loxynil*                                              | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| MCPA*                                                 | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| MCPB*                                                 | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| mecoprop*                                             | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| Picloram*                                             | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Triclopyr*                                            | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |

1

-

%w/w

13.6

-

# Moisture Content Method: AN002 Tested: 5/7/2023



# ME335307 R0

-

|                                                       |               | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>27 Jun 2023 | ME335307.018<br>Soil<br>27 Jun 2023<br>SE249904.018 | ME335307.019<br>Soil<br>27 Jun 2023<br>SE249904.019 | ME335307.020<br>Soil<br>27 Jun 2023<br>SE249904.020 |
|-------------------------------------------------------|---------------|--------------------------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                             | Units         | LOR                                                          |                     |                                                     |                                                     |                                                     |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Teste                                                 | ed: 6/7/2023        |                                                     |                                                     |                                                     |
| Bromoxynil*                                           | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| Clopyralid*                                           | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| 2,4-DB*                                               | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| 2,6-D*                                                | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| Dicamba*                                              | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| Dinoseb*                                              | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| loxynil*                                              | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| MCPA*                                                 | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| MCPB*                                                 | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| mecoprop*                                             | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| Picloram*                                             | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                          | -                   | <0.5                                                | -                                                   | -                                                   |
| Triclopyr*                                            | mg/kg         | 0.01                                                         | -                   | <0.01                                               | -                                                   | -                                                   |

1

-

%w/w

12.0

-

# Moisture Content Method: AN002 Tested: 5/7/2023



# ME335307 R0

-

|                                                       |               | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME335307.021<br>Soil<br>27 Jun 2023<br>SE249904.021 | ME335307.022<br>Soil<br>27 Jun 2023<br>SE249904.022 | ME335307.023<br>Soil<br>27 Jun 2023<br>SE249904.023 | ME335307.024<br>Soil<br>27 Jun 2023<br>SE249904.024 |
|-------------------------------------------------------|---------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Parameter                                             | Units         | LOR                                                          |                                                     |                                                     |                                                     |                                                     |
| Pesticides / Herbicides in Soils by LC-MS/MS MA-1569. | SL.01 Method: | MA1569 Test                                                  | ed: 6/7/2023                                        |                                                     |                                                     |                                                     |
| Bromoxynil*                                           | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 4-Chlorophenocy acetic acid (4-CPA)*                  | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Clopyralid*                                           | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]*            | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| 2,4-DB*                                               | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 2,6-D*                                                | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Dicamba*                                              | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| Dichloroprop / Dichlorprop-P*                         | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| Dinoseb*                                              | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Fluroxypyr*                                           | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| loxynil*                                              | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| MCPA*                                                 | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| MCPB*                                                 | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| mecoprop*                                             | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| Picloram*                                             | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| 2,4,5-T*                                              | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |
| 2,4,5-TP*                                             | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| 2,4,6-Trichlorophenoxy acetic acid*                   | mg/kg         | 0.5                                                          | -                                                   | <0.5                                                | -                                                   | -                                                   |
| Triclopyr*                                            | mg/kg         | 0.01                                                         | -                                                   | <0.01                                               | -                                                   | -                                                   |

1

%w/w

19.0

-

# Moisture Content Method: AN002 Tested: 5/7/2023



### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

### Moisture Content Method: ME-(AU)-[ENV]AN002

| Parameter  | QC<br>Reference | Units | LOR | DUP %RPD |
|------------|-----------------|-------|-----|----------|
| % Moisture | LB063471        | %w/w  | 1   | 3%       |

### Pesticides / Herbicides in Soils by LC-MS/MS MA-1569.SL.01 Method: MA1569

| Parameter                                  | QC        | Units | LOR  | MB    | DUP %RPD | LCS       | MS        | MSD %RPD |
|--------------------------------------------|-----------|-------|------|-------|----------|-----------|-----------|----------|
|                                            | Reference |       |      |       |          | %Recovery | %Recovery |          |
| Bromoxynil*                                | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| 4-Chlorophenocy acetic acid (4-CPA)*       | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| Clopyralid*                                | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| 2,4-D [(2,4-Dichlorophenoxy) acetic acid]* | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| 2,4-DB*                                    | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| 2,6-D*                                     | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| Dicamba*                                   | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| Dichloroprop / Dichlorprop-P*              | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| Dinoseb*                                   | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| Fluroxypyr*                                | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| loxynil*                                   | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| MCPA*                                      | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| MCPB*                                      | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| mecoprop*                                  | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| Picloram*                                  | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| 2,4,5-T*                                   | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |
| 2,4,5-TP*                                  | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| 2,4,6-Trichlorophenoxy acetic acid*        | LB063572  | mg/kg | 0.5  | <0.5  | 0%       | NA        | NA        | NA       |
| Triclopyr*                                 | LB063572  | mg/kg | 0.01 | <0.01 | 0%       | NA        | NA        | NA       |



# **METHOD SUMMARY**

| METHOD  | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN002   | The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.                                                                                                                                                                                                                                         |
| MA-1569 | This method is intended for the analysis of a diverse range of pesticides and herbicides by Liquid<br>Chromatography using a Tandem Mass Spectrometry detector (LC-MS/MS). Due to the diverse nature of the<br>analytes covered in this method each analyte requires its own analytical acquisition method thus the sample is<br>run multiple times according to the analyte list requested.<br>Soil and solid samples are extracted with ACN and extracts are filtered then directly injected onto LC -MS/MS<br>using selective ion monitoring. |



FOOTNOTES .

# IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. ↑↓ Raised or Lowered Limit of Reporting \* NATA accreditation does not cover the performance of this service. QFH QC result is above the upper tolerance the list labeled the triangle list labeled to the upper tolerance QFL QC result is below the lower tolerance

 \*\*\*
 Indicative data, theoretical holding time exceeded.
 The sample was not analysed for this analyte

 \*\*\*
 Indicates that both \* and \*\* apply.
 NVL
 Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sqs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.



Appendix G. External review

02 6161 1762

contact@murrang.com.au

WWW.MUTTANg.com.au ABN 96 162 928 958 Reference: MES2167-R02:2 Limited DSI, Lot 3 DP1118635, Tarago, NSW GroupOne 21 July 2023 Page G1

lanterra consulting

# Detailed Site Investigation Checklist

Report Title: Limited site investigation, Lot 3 DP1118635, 41 King Street, Tarago, NSW: Part one (Murrang Earth Sciences, reference MES2167-R02)

## Date: 21 July 2023

The following checklist template has been adopted from the NSW EPA *Consultants reporting on contaminated land Contaminated Land Guidelines*, May 2020.

### Compliance with NSW EPA (2020) 'Consultants Reporting on Contaminated Land'

| Report Section                             | Required Information                                                                                                | Present<br>Yes/No/NA           |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Document Control                           | Date, Version Number, author and reviewer (including certification details) and who commissioned the report         | Yes                            |
| Executive Summary                          | Background                                                                                                          | Yes                            |
|                                            | Objectives of the Investigation                                                                                     | Yes                            |
|                                            | Scope of Work                                                                                                       | Yes                            |
|                                            | Summary of key findings                                                                                             | Yes                            |
|                                            | Summary of conclusions and recommendations                                                                          | Yes                            |
| Objectives                                 | The objectives of the investigation / report and the broader objectives for the site/investigation                  | Yes                            |
| Scope of Work                              | Scope of work performed (and work not undertaken where relevant)                                                    | Yes                            |
| Site Identification                        | Site identification and detail items from ASC NEPM Field Checklist 'Site Information' sheet                         | Yes (See<br>Comments<br>Below) |
| Site History                               | Site history items from the ASC NEPM Field Checklist 'Site Information Sheet'                                       | Yes                            |
| Site Condition and Surrounding Environment | Site condition and surrounding environment items from ASC NEPM Field Checklist 'Site Information' sheet             | Yes                            |
| Conceptual Site Model                      | Regional and local geology, hydrogeology and hydrology items from the ASC NEPM Field Checklist<br>'CSM' sheet       | Yes                            |
|                                            | List of Potential contaminants of potential concern                                                                 | Yes                            |
|                                            | Potential and known sources of contamination, on- and offsite                                                       | Yes                            |
|                                            | Mechanism of contamination (e.g. top-down spill, subsurface release from tank or pipe, atmospheric deposition etc.) | Yes                            |



|                                                                | Potentially affected environmental media                                                                                                                                                                                                                                           | Yes |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                | Consideration of spatial and temporal variations                                                                                                                                                                                                                                   | Yes |
|                                                                | Actual or potential exposure pathways including preferential pathways                                                                                                                                                                                                              | Yes |
|                                                                | Human and ecological receptors                                                                                                                                                                                                                                                     | Yes |
|                                                                | Frequency of exposure                                                                                                                                                                                                                                                              | Yes |
|                                                                | Linkage of source, pathway and receptor assessed in terms of potentially complete pathways and likelihood                                                                                                                                                                          | Yes |
|                                                                | Discussion on multiple lines of evidence (for complex sites)                                                                                                                                                                                                                       | NA  |
| Data Quality Objectives                                        | Step 1: State the Problem                                                                                                                                                                                                                                                          | Yes |
|                                                                | Step 2: Identify the decision/goal of the study                                                                                                                                                                                                                                    | Yes |
|                                                                | Step 3: Identify the information inputs                                                                                                                                                                                                                                            | Yes |
|                                                                | Step 4: Define the boundaries of the study                                                                                                                                                                                                                                         | Yes |
|                                                                | Step 5: Develop the analytical approach                                                                                                                                                                                                                                            | Yes |
|                                                                | Step 6: Specify performance and acceptance criteria                                                                                                                                                                                                                                | Yes |
|                                                                | Step 7: Develop the plan for obtaining data                                                                                                                                                                                                                                        | Yes |
| Sampling and Analysis Quality Plan and Sampling<br>Methodology |                                                                                                                                                                                                                                                                                    | Yes |
| Quality Assurance / Quality Control                            | Details of Sampling Team                                                                                                                                                                                                                                                           | Yes |
| ,,,,,,                                                         | References to sampling plan/method, including any deviations from it – sampling and analysis quality plan                                                                                                                                                                          | Yes |
|                                                                | Any information that could be required to evaluate measurement uncertainty for subsequent testing (analysis)                                                                                                                                                                       | Yes |
|                                                                | Decontamination procedures carried out between sampling events                                                                                                                                                                                                                     | Yes |
|                                                                | Logs for each sample collected, including date, time, locations (with GPS Coordinates if possible), sampler, duplicate samples, chemical analyses to be performed, site observations and weather/environmental (i.e. surroundings) conditions. Include any diagrams, maps, photos. | Yes |
|                                                                | Chain of Custody fully identifying for each sample – the sampler, nature of the sample, collection date, analyses to be performed, sample preservation method, departure time from the site and dispatch couriers (where applicable).                                              | Yes |
|                                                                | Field quality assurance/quality control results (e.g. field blank, rinsate blank, trip blank, laboratory prepared trip spike)                                                                                                                                                      | Yes |
|                                                                | Sample splitting techniques – subsampling, containers/preservation (ensure unique ID for subsequent samples provided)                                                                                                                                                              | Yes |
|                                                                | Statement of duplicate frequency                                                                                                                                                                                                                                                   | Yes |



|                                 | Background sample results                                                                                                                            | NA  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                 | Field instrument calibrations                                                                                                                        | NA  |
|                                 | Sampling devices and equipment                                                                                                                       | Yes |
|                                 | A copy of signed chain of custody forms acknowledging receipt date, time and temperature and                                                         | Yes |
|                                 | identity of samples including shipments                                                                                                              | res |
|                                 | Recording of holding times and a comparison with method specifications                                                                               | Yes |
|                                 | Analytical methods used, including any deviations                                                                                                    | Yes |
|                                 | Laboratory performance for the analytical method using inter-laboratory duplicates.                                                                  | Yes |
|                                 | Surrogates and spiles used throughout the full method process, or only in parts. Results are corrected for the recovery.                             | Yes |
|                                 | A list of what spikes and surrogates were run with their recoveries and acceptance criteria                                                          | Yes |
|                                 | Practical Quantification Limits (PQL)                                                                                                                | Yes |
|                                 | Reference Laboratory control sample (LCS) and check results                                                                                          | Yes |
|                                 | Laboratory duplicate results                                                                                                                         | Yes |
|                                 | Laboratory blank results                                                                                                                             | Yes |
|                                 | Results are within control chart limits                                                                                                              | Yes |
|                                 | Evaluation of all quality assurance/quality control information listed above against the stated                                                      | Yes |
|                                 | data quality objectives including a quality assurance/control data evaluation                                                                        |     |
| Field and Analytical Results    | Summary of Previous Results                                                                                                                          | NA  |
|                                 | A table of analytical results that:                                                                                                                  | Yes |
|                                 | Shows all essential details such as sample identification numbers and sampling depth                                                                 | Yes |
|                                 | Shows assessment criteria                                                                                                                            | Yes |
|                                 | Highlights all results exceeding any assessment criteria                                                                                             | Yes |
|                                 | Summary/discussion of the analytical results table                                                                                                   | Yes |
|                                 | Sample descriptions for all media where applicable (e.g. soil, sediment, surface water, groundwater, soil vapour, ground gas, indoor air and biota). | Yes |
|                                 | Test pit or bore logs (well construction details where appropriate for example groundwater level expressed in Australian height datum)               | Yes |
|                                 | Site plan showing all sample locations                                                                                                               | Yes |
|                                 | Site plan(s) showing the extent of soil and groundwater contamination (if known)                                                                     | Yes |
| Conclusions and Recommendations | Summary of all findings and discussion of results                                                                                                    | Yes |
|                                 | Conclusions addressing the stated objectives                                                                                                         | Yes |
|                                 | Assumptions used in reaching the conclusions                                                                                                         | No  |
|                                 | Extent of uncertainties in the results (quantified where possible)                                                                                   | No  |



|            | Recommendations for further work (if appropriate)          | Yes |
|------------|------------------------------------------------------------|-----|
| References | References for all guidelines and previous investigations. | Yes |

### Comments

Given the potential risk contamination to groundwater may pose to receptors such as the residents of Tarago, discussion regarding the potential risk to groundwater should be included in Section 6.2 to reflect that there is no risk and the basis that this conclusion can be drawn.

### Closing

Based on the information provided in the reviewed report the objectives of the investigation are met and the conclusions drawn from the analysed data are acceptable.

I trust that the results of this review meet your immediate requirements. However, should you have any queries or wish to discuss any points in greater detail, please do not hesitate to contact the undersigned.

Chris Gunton Principal Environmental Scientist 0432 324 348

